Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 100 | 3 | 379-386

Article title

Dynamics of Photoexcited Carriers in GaInAs/GaAs Quantum Dots

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present photocurrent and time-resolved photoluminescence investigations of AlGaAs/GaInAs/GaAs structures containing GaInAs/GaAs self-assembled quantum dots. The high electrical field in those devices significantly influences carrier dynamics. The photocurrent spectra show a double peak with maxima at 1.40 and 1.47 eV (at 80 K). These maxima are due to the GaInAs wetting layer (higher) and the quantum dots (lower). The photoluminescence spectra comprise weak excitonic luminescence from GaAs at 1.504 eV (at 80 K) and stronger and broad emission from the Ga_{0.4}In_{0.6}As quantum dots. At 300 K, the quantum dots emission has a lifetime of 1.1 ns and has a maximum at an energy of 1.38 eV. By analysis of both experiments, we can separate the influence of different radiative and nonradiative recombination processes. So, the tunneling rate: r_T=0.5 ns^{-1} and the radiative recombination rate in the quantum dots: r_{RQD}=0.4 ns^{-1} have been determined. The high tunneling probability (due to the influence of the built-in electric field) reveals that the tunneling effect is important for the recombination and transport processes in our structures.

Keywords

EN

Contributors

author
  • Institute of Experimental Physics, Warsaw University, Hoża 69, 00-681 Warszawa, Poland
author
  • Institute of Experimental Physics, Warsaw University, Hoża 69, 00-681 Warszawa, Poland
author
  • Institute of Experimental Physics, Warsaw University, Hoża 69, 00-681 Warszawa, Poland
author
  • MPI für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

References

  • 1. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M.H. Pilkuhn, B. Ohnesorge, A. Forchel, J. Appl. Phys., 80, 4019, 1996
  • 2. S. Grosse, J.H.H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, J. Ahopelto, Phys. Rev. B, 55, 4473, 1997
  • 3. A. Kurtenbach, W.W. Ruhle, K. Eberl, Solid State Commun., 96, 265, 1995
  • 4. K.P. Korona, A. Babiński, J. Kuhl, J.M. Baranowski, R. Leon, submitted to Phys. Status Solidi A
  • 5. J. Feldmann, G. Peter, E.O. Gobel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Phys. Rev. Lett., 59, 2337, 1987
  • 6. A. Babiński, K.P. Korona, J.M. Baranowski, in: Proc. 11th Int. Semiconducting and Insulating Materials Conf. (XI SIMC), Canberra 2000, Eds. C. Jagadish, N.J. Welham, IEEE Publishing, Piscataway (NJ) 2001, p. 232
  • 7. J.A. Rossi, C.M. Wolfe, G.E. Stillman, J.O. Dimmock, Solid State Commun., 8, 2021, 1970
  • 8. B.J. Skromme, T.S. Low, T.J. Roth, G.E. Stillmann, J.K. Kennedy, J.K. Abrokwah, J. Electron. Mater., 12, 433, 1983
  • 9. W.-H. Chang, T.M. Hsu, C.C. Huang, S.L. Hsu, C.Y. Lai, N.T. Yeh, T.E. Nee, J.-I. Chyi, Phys. Rev. B, 62, 6959, 2000

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv100n318kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.