Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 100 | 2 | 205-212

Article title

Breakdown of the Dissipationless Quantum Hall State: Quantised Steps and Analogies with Classical and Quantum Fluid Dynamics

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The breakdown of the integer quantum Hall effect at high currents sometimes occurs as a series of regular steps in the dissipative voltage drop measured along the Hall bar. The steps were first seen clearly in two Hall bars used to maintain the US Resistance Standard, but have also been reported in other devices. It is proposed that the origin of the steps can be understood in terms of an instability in the dissipationless flow at high electron drift velocities. The instability is induced by impurity- or defect-related inter-Landau level scattering processes in local microscopic regions of the Hall bar. Electron-hole pairs (magneto-excitons) are generated in the quantum Hall fluid in these regions and that the electronic motion can be envisaged as a quantum analogue of the von Karman vortex street which forms when a classical fluid flows past an obstacle.

Keywords

EN

Year

Volume

100

Issue

2

Pages

205-212

Physical description

Dates

published
2001-08
received
2001-06-01

Contributors

author
  • School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

References

  • 1. K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett., 45, 494, 1980
  • 2. For a comprehensive review of QHE breakdown, see G. Nachtwei, Physica E, 4, 79, 1991
  • 3. M.E. Cage, J. Res. Natl. Inst. Stand. Technol., 98, 361, 1993. This reference, and Ref. [4] below, describe the voltage steps observed in the two US Resistance Standard samples with reference numbers GaAs(7) and GaAs(8)
  • 4. C.F. Lavine, M.E. Cage, R.E. Elmquist, J. Res. Natl. Inst. Stand. Technol., 99, 757, 1994
  • 5. H.L. Stormer, A.M. Chang, D.C. Tsui, J.C.M. Hwang, in: Proc. 17th Int. Conf. on the Physics of Semiconductors, 17th ICPS, San Francisco 1984, Eds. J.D. Chadhi, W.A. Harrison, Springer, Berlin 1985, p. 267
  • 6. O. Heinonen, P.L. Taylor, S.M. Girvin, Phys. Rev., 30, 3016, 1984
  • 7. L. Eaves, P.S.S. Guimaraes, J.-C. Portal, J. Phys. C, Solid State Phys., 17, 6177, 1984
  • 8. L. Eaves, F.W. Sheard, Semicond. Sci. Technol., 1, 346, 1986
  • 9. N.Q. Balaban, U. Meirav, H. Shtrikman, Y. Levinson, Phys. Rev. Lett., 71, 1443, 1993
  • 10. C. Chaubet, A. Raymond, D. Dur, Phys. Rev. B, 52, 11178, 1995
  • 11. A.H. MacDonald, T.M. Rice, W.F. Brinkman, Phys. Rev., 28, 3648, 1983
  • 12. D.J. Thouless, J. Phys. C, 18, 6211, 1985
  • 13. C.W.J. Beenakker, H. van Houten, in: Solid State Physics - Advances in Research and Applications, Vol. 44, Eds. H. Ehrenreich, D. Turnbull, Academic Press, Boston 1991, p. 1
  • 14. D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Phys. Rev. B, 46, 4026, 1992
  • 15. C. Kallin, B.I. Halperin, Phys. Rev. B, 30, 5655, 1984
  • 16. S. Komiyama, Y. Kawaguchi, Phys. Rev. B, 61, 2014, 2000
  • 17. L. Eaves, S.T. Stoddart, R. Wirtz, A.C. Neumann, B.L. Gallagher, P.C. Main, M. Henini, Physica E, 6, 136, 2000
  • 18. B.E. Cole, J.M. Chamberlain, M. Henini, T. Cheng, W. Batty, A. Wittlin, J.A.A.J. Perenboom, A. Ardavan, A. Polisski, J. Singleton, Phys. Rev. B, 55, 2503, 1997
  • 19. F. Fang, W.E. Howard, Phys. Rev. Lett., 16, 797, 1966
  • 20. A.H. MacDonald, J. Phys. C, 18, 1003, 1985
  • 21. A.M. Martin, K.A. Benedict, L. Eaves, submitted to Phys. Rev. Lett

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv100n205kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.