Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 100 | 1 | 3-22

Article title

Application of Algebraic Combinatorics to Finite Spin Systems

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A finite spin system invariant under a symmetry group G is a very illustrative example of a finite group action on mappings f: X → Y (X is a set of spin carriers, Y contains spin projections for a given spin number s). Orbits and stabilizers are used as additional indices of the symmetry adapted basis. Their mathematical nature does not decrease a dimension of a given eigenproblem, but they label states in a systematic way. It allows construction of general formulas for vectors of symmetry adapted basis and matrix elements of operators commuting with the action of G in the space of states. The special role is played by double cosets, since they label nonequivalent (from the symmetry point of view) matrix elements ãx|H|yã for an operator H between Ising configurations |x〉,|y〉. Considerations presented in this paper should be followed by a detailed discussion of different symmetry groups (e.g.) cyclic or dihedral ones) and optimal implementation of algorithms. The paradigmatic example, i.e. a finite spin system, can be useful in investigations of magnetic macromolecules like Fe_6 or Mn_{12} acetate.

Keywords

EN

Year

Volume

100

Issue

1

Pages

3-22

Physical description

Dates

published
2001-07
received
2001-06-11
(unknown)
2001-07-13

Contributors

author
  • Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

References

  • 1. H.A. Bethe, Z. Phys., 71, 205, 31; L. Hulthén, Arkiv Mat. Astron. Fys. A, 26, 1, 1938
  • 2. J.C. Bonner, M.E. Fisher, Phys. Rev. A, 135, 640, 64; J. Oitmaa, D.D. Betts, Can. J. Phys., 56, 897, 1978
  • 3. W. Marshall, Proc. R. Soc. A, 232, 48, 55; E. Lieb, D. Mattis, J. Math. Phys., 3, 749, 62; P.L. Iske, W.J. Caspers, Physica A, 142, 360, 87; E. Dagatto, A. Moreo, Phys. Rev. B, 38, 5087, 89; K. Fabricius, U. Low, K.-H. Muter, P. Ueberholz, Phys. Rev. B, 44, 7476, 91, G. Kamieniarz, H.W.J. Blote, J. Phys. A, Math. Gen., 26, 201, 93; G. Kamieniarz, Phase Trans., 57, 105, 1996
  • 4. M. Affronte, J.C. Lasjaunias, A. Cornia, A. Caneschi, Phys. Rev. B, 60, 1161, 1999
  • 5. D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science, 265, 1054, 94; A. Lascialfari, D. Gatteschi, A. Cornia, U. Balucani, M.G. Pini, A. Rettori, Phys. Rev. B, 57, 1115, 98; A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, M.A. Novak, C. Paulsen, W. Wernsdorfer, J. Magn. Magn. Mater., 200, 182, 1999
  • 6. J.E. Hirsh, R.L. Sugar, D.J. Scalapino, R. Blankenbecler, Phys. Rev. B, 26, 5033, 82; C. Kalle, V. Winkelmann, J. Stat. Phys., 28, 639, 82; S. Wansleben, J.G. Zabolitzky, C. Kalle, J. Stat. Phys., 37, 271, 84; H.W.J. Blote, E. Luijten, J.R. Heringa, J. Phys. A, Math. Gen., 28, 6289, 1995
  • 7. P. Pawlicki, J. Rogiers, Physica A, 214, 277, 95; P. Pawlicki, G. Kamieniarz, L. Dębski, Physica A, 242, 290, 1997
  • 8. W. Florek, Acta Magnetica, II, 43, 85; V, 145, 88; VIII, 25, 1991
  • 9. G. Kamieniarz, R. Matysiak, W. Florek, S. Wałcerz, J. Magn. Magn. Mater., 203, 271, 1999
  • 10. W. Florek, Acta Phys. Pol. A, 96, 699, 1999
  • 11. L.D. Faddeev, L.A. Takhtajan, Zapiski Nauchnykh Seminarov LOMI, 109, 134, 81; R. Olchawa, Physica B, 291, 29, 2000
  • 12. B. Lulek, T. Lulek, Acta Phys. Pol. A, 66, 149, 84 and the references cited therein
  • 13. B. Lulek, T. Lulek, J. Phys. A, Math. Gen., 17, 3077, 1984
  • 14. B. Lulek, T. Lulek, R. Chatterjee, J. Biel, Can. J. Phys., 63, 1061, 85; B. Lulek, T. Lulek, J. Biel, R. Chatterjee, Can. J. Phys., 63, 1065, 85; B. Lulek, T. Lulek, Acta Phys. Pol. A, 71, 869, 87; W. Florek, T. Lulek, J. Phys. A, Math. Gen., 20, 1921, 87; T. Lulek, Acta Phys. Pol. A, 80, 769, 91; S. Wałcerz, T. Lulek, Acta Phys. Pol. A, 80, 781, 91; S. Wałcerz, Acta Magnetica, X, 13, 1994/1995
  • 15. W. Florek, Comp. Phys. Commun., 138, 264, 2001
  • 16. S. Bucikiewicz, W. Florek, Comp. Meth. Sci. Tech., 7, 27, 2001; W. Florek, Comp. Meth. Sci. Tech., 7, 41, 2001
  • 17. S. Bucikiewicz, L. Dębski, W. Florek, Acta Phys. Pol. A, in press
  • 18. A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI Wissenshaftsverlag, Mannheim-Wien-Zurich 1991
  • 19. S.L. Altmann, Induced Representations in Crystals and Molecules, Academic Press, London 1977
  • 20. C.J. Bradley, A.P. Cracknell, The Mathematical Theory of Symmetry in Solids, Clarendon, Oxford 1972
  • 21. T. Lulek, Acta Phys. Pol. A, 57, 415, 1980; D.B. Litvin, J. Math. Phys., 23, 337, 1982. S.C. Chen, D.J. Newman, J. Phys. A, Math. Gen., 15, 3383, 1982; T. Lulek, M. Szopa, J. Phys. A, Math. Gen., 23, 677, 1990; S. Wałcerz, T. Lulek, Acta Phys. Pol. A, 90, 781, 1991; A. Kerber, in: Symmetry and Structural Properties of Condensed Matter, Eds. W. Florek, T. Lulek, M. Mucha, World Sci., Singapore 1991, p. 3
  • 22. W. Florek, T. Lulek, J. Phys. A, Math. Gen., 26, 2153, 1993

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv100n107kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.