Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 2 | 309-312

Article title

Optical Diffraction Strain Sensor Prepared by Interference Lithography

Content

Title variants

Languages of publication

EN

Abstracts

EN
An optical strain sensor was developed for use in stretchable electronics. It consists of a diffraction grating formed directly on the examined surface illuminated by a laser beam which creates interference pattern. This pattern can then be used to determine axial and lateral strains for a uniaxial stress states. Direct laser interference patterning was employed as a fast processing tool for the preparation of micro- and sub-microgratings. Two coherent beams of Nd:YAG laser with 532 nm wavelength and pulse duration of 10 ns were used to selectively remove material from the irradiated sample surface. This technique creates periodic pattern on the metallized surface of polymeric substrates. New sensors formed by direct laser interference patterning method were able to resolve higher order diffraction maxima, which would be of benefit for strain measurement application. Experimental setup for tensile tests was composed of laser probe, the sensor element, and CCD camera. To extract strain values, we analysed acquired interference pattern images in real time software, developed with LabVIEW environment. This kind of contactless strain sensor is suitable for examination of stretchable electronics component for which conventional tensile tests are either not acceptable or can interfere with its normal operation.

Year

Volume

133

Issue

2

Pages

309-312

Physical description

Dates

published
2018-02

Contributors

author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • Faculty of Physics, Astronomy and Appl. Computer Science, Jagiellonian University, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

References

  • [1] S. Keil, Technology and Practical Use of Strain Gages, Ernst, Berlin 2017
  • [2] G.C. Kuczynski, Phys. Rev. 94, 1 (1954), doi: 10.1103/PhysRev.94.61
  • [3] G. Banas, C. Simsir, Strain Gauges: Theory, Instrumentation and Installation, Urbana, Illinois 2002
  • [4] C. To, T.L. Hellebrekers, Yong-Lae Park, in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys., Hamburg, 2015, doi: 10.1109/IROS.2015.7354215
  • [5] S. Root, et al., Chem. Rev. 117, 6467 (2017), doi: 10.1021/acs.chemrev.7b00003
  • [6] M. Melzer, D. Karnaushenko, G. Lin, S. Baunack, D. Makarov, O. G. Schmidt, Adv. Mater. 27, 1333 (2015), doi: 10.1002/adma.201403998
  • [7] N. Münzenrieder et al., Adv. Electron. Mater. 2, 1600188 (2016), doi: 10.1002/aelm.201670043
  • [8] H.-J. Hagemann, W. Gudat, C. Kunz, J. Opt. Soc. Am. 65, 742 (1975), doi: 10.1364/JOSA.65.000742
  • [9] Y. Zabila, M. Perzanowski, A. Dobrowolska, M. Kąc, A. Polit, M. Marszałek, Acta Phys. Pol. A 115, 591 (2009), doi: 10.12693/APhysPolA.115.591
  • [10] Y. Zabila, M. Perzanowski, K. Marszałek, M. Marszałek, Elektronika 9, 35 (2009)
  • [11] M. Lorens, Y. Zabila, M. Krupiński, M. Perzanowski, K. Suchanek, K. Marszałek, Elektronika 8, 65 (2011)
  • [12] M. Lorens, Y. Zabila, M. Krupiński, M. Perzanowski, K. Suchanek, K. Marszałek, M. Marszałek, Acta Phys. Pol. A 121, 543 (2012), doi: 10.12693/APhysPolA.121.543
  • [13] M. Bass, Handbook of optics: Vol.1. Geometrical and Physical Optics, Polarized Light, Components and Instruments, 3rd Ed., McGraw Hill, New York, 2010 http://mhprofessional.com/9780071701600-usa-handbook-of-optics-third-edition-5-volume-set-group
  • [14] E. Zabila, I. Protsenko, Ukr. J. Phys. 50, 727 (2005)
  • [15] Function Centroid, Wolfram Mathworld http://mathworld.wolfram.com/FunctionCentroid.html
  • [16] DuPont™ Kapton® Summary of Properties, 2017 http://dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf
  • [17] E.J. Hughes, J.L. Rutherford, Determination of Mechanical Properties of Polymer Film Materials, Technical Report NASA-CR-147115, 1975

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app133z2p23kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.