PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 2 | 309-312
Article title

Optical Diffraction Strain Sensor Prepared by Interference Lithography

Content
Title variants
Languages of publication
EN
Abstracts
EN
An optical strain sensor was developed for use in stretchable electronics. It consists of a diffraction grating formed directly on the examined surface illuminated by a laser beam which creates interference pattern. This pattern can then be used to determine axial and lateral strains for a uniaxial stress states. Direct laser interference patterning was employed as a fast processing tool for the preparation of micro- and sub-microgratings. Two coherent beams of Nd:YAG laser with 532 nm wavelength and pulse duration of 10 ns were used to selectively remove material from the irradiated sample surface. This technique creates periodic pattern on the metallized surface of polymeric substrates. New sensors formed by direct laser interference patterning method were able to resolve higher order diffraction maxima, which would be of benefit for strain measurement application. Experimental setup for tensile tests was composed of laser probe, the sensor element, and CCD camera. To extract strain values, we analysed acquired interference pattern images in real time software, developed with LabVIEW environment. This kind of contactless strain sensor is suitable for examination of stretchable electronics component for which conventional tensile tests are either not acceptable or can interfere with its normal operation.
Publisher

Year
Volume
133
Issue
2
Pages
309-312
Physical description
Dates
published
2018-02
Contributors
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • Faculty of Physics, Astronomy and Appl. Computer Science, Jagiellonian University, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
author
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
References
  • [1] S. Keil, Technology and Practical Use of Strain Gages, Ernst, Berlin 2017
  • [2] G.C. Kuczynski, Phys. Rev. 94, 1 (1954), doi: 10.1103/PhysRev.94.61
  • [3] G. Banas, C. Simsir, Strain Gauges: Theory, Instrumentation and Installation, Urbana, Illinois 2002
  • [4] C. To, T.L. Hellebrekers, Yong-Lae Park, in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys., Hamburg, 2015, doi: 10.1109/IROS.2015.7354215
  • [5] S. Root, et al., Chem. Rev. 117, 6467 (2017), doi: 10.1021/acs.chemrev.7b00003
  • [6] M. Melzer, D. Karnaushenko, G. Lin, S. Baunack, D. Makarov, O. G. Schmidt, Adv. Mater. 27, 1333 (2015), doi: 10.1002/adma.201403998
  • [7] N. Münzenrieder et al., Adv. Electron. Mater. 2, 1600188 (2016), doi: 10.1002/aelm.201670043
  • [8] H.-J. Hagemann, W. Gudat, C. Kunz, J. Opt. Soc. Am. 65, 742 (1975), doi: 10.1364/JOSA.65.000742
  • [9] Y. Zabila, M. Perzanowski, A. Dobrowolska, M. Kąc, A. Polit, M. Marszałek, Acta Phys. Pol. A 115, 591 (2009), doi: 10.12693/APhysPolA.115.591
  • [10] Y. Zabila, M. Perzanowski, K. Marszałek, M. Marszałek, Elektronika 9, 35 (2009)
  • [11] M. Lorens, Y. Zabila, M. Krupiński, M. Perzanowski, K. Suchanek, K. Marszałek, Elektronika 8, 65 (2011)
  • [12] M. Lorens, Y. Zabila, M. Krupiński, M. Perzanowski, K. Suchanek, K. Marszałek, M. Marszałek, Acta Phys. Pol. A 121, 543 (2012), doi: 10.12693/APhysPolA.121.543
  • [13] M. Bass, Handbook of optics: Vol.1. Geometrical and Physical Optics, Polarized Light, Components and Instruments, 3rd Ed., McGraw Hill, New York, 2010 http://mhprofessional.com/9780071701600-usa-handbook-of-optics-third-edition-5-volume-set-group
  • [14] E. Zabila, I. Protsenko, Ukr. J. Phys. 50, 727 (2005)
  • [15] Function Centroid, Wolfram Mathworld http://mathworld.wolfram.com/FunctionCentroid.html
  • [16] DuPont™ Kapton® Summary of Properties, 2017 http://dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf
  • [17] E.J. Hughes, J.L. Rutherford, Determination of Mechanical Properties of Polymer Film Materials, Technical Report NASA-CR-147115, 1975
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z2p23kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.