Journal
Article title
Title variants
Languages of publication
Abstracts
In this work we present recent results on nanoscale imaging in the extreme ultraviolet and soft X-ray spectral ranges, describing three novel imaging systems dedicated for high spatial resolution imaging of nanoscale objects with the extreme ultraviolet and soft X-ray radiations. The extreme ultraviolet and soft X-ray full field microscopes operate at 13.8 nm and 2.88 nm wavelengths and are capable of imaging of nanostructures with a sub-50 nm spatial resolution. A soft X-ray contact microscope operates in the "water-window" spectral range from 2.3 to 4.4 nm wavelength, to obtain images of an internal structure of the investigated object in a thin surface layer of soft X-ray light sensitive photoresist. The development of such compact imaging systems may, in the near future, be important from the point of view of new research related to biological, material science, and nanotechnology applications. Such preliminary applications are also shown in the studies of biological samples, including carcinoma cells, diatoms, and neurons.
Journal
Year
Volume
Issue
Pages
271-276
Physical description
Dates
published
2018-02
Contributors
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
References
- [1] The International Organization for Standardization, ISO 21348 Definitions of Solar Irradiance Spectral Categories, 2007, p. 6
- [2] B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, G. O'Sullivan, Appl. Phys. Lett. 102, 041117 (2013), doi: 10.1063/1.4789982
- [3] M.A. Le Gros, G. Mcdermott, B.P. Cinquin, J. Synchr. Radiat. 21, 1370 (2014), doi: 10.1107/S1600577514015033
- [4] S. Marino, S. Palanco, M. Gabás, R. Romero, J.R. Ramos-Barrado, Nanotechnology 26, 55303 (2015), doi: 10.1088/0957-4484/26/5/055303
- [5] W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, P. Naulleau, Opt. Expr. 20, 9 (2012), doi: 10.1364/OE.20.009777
- [6] H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, I. Snigireva, A. Snigirev, H.F. Poulsen, Nature Commun. 14, 6098 (2015), doi: 10.1038/ncomms7098
- [7] J.C. Andrews, F. Meirer, Y. Liu, Z. Mester, P. Pianetta, Microsc. Res. Techn. 74, 671 (2011), doi: 10.1002/jemt.20907
- [8] K.W. Kim, Y. Kwon, K.Y. Nam, J.H. Lim, K.G. Kim, K.S. Chon, B.H. Kim, D.E. Kim, J. Kim, B.N. Ahn, H.J. Shin, S. Rah, K.H. Kim, J.S. Chae, D.G. Gweon, D.W. Kang, S.H. Kang, J.Y. Min, K.S. Choi, S.E. Yoon, E.N. Kim, Y. Namba, K.H. Yoon, Phys. Med. Biol. 51, N99 (2006), doi: 10.1088/0031-9155/51/6/N01
- [9] J.J. Park, D.S. Kim, S.C. Jeon, K.H. Lee, J. Lee, K.N. Kim, J.J. Yoo, C.H. Nam, Opt. Lett. 34, 235 (2009), doi: 10.1364/OL.34.000235
- [10] M. Dierolf, P. Thibault, A. Menzel, C.M. Kewish, K. Jefimovs, U. Schlichting, K. Von König, O. Bunk, F. Pfeiffer, New J. Phys. 12, 035017 (2010), doi: 10.1088/1367-2630/12/3/035017
- [11] M.C. Marconi, P.W. Wachulak, Progr. Quant. Electron. 34, 173 (2010), doi: 10.1016/j.pquantelec.2010.03.001
- [12] P.W. Wachulak, Ł. Wegrzynski, A. Bartnik, T. Fok, R. Jarocki, J. Kostecki, M. Szczurek, H. Fiedorowicz, Laser Part. Beams 31, 219 (2013), doi: 10.1017/S0263034613000207
- [13] P.W. Wachulak, C.A. Brewer, F. Brizuela, C.S. Menoni, W. Chao, E.H. Anderson, R.A. Bartels, J.J. Rocca, M.C. Marconi, J. Opt. Soc. Am. B 25, B20 (2008), doi: 10.1364/JOSAB.25.000B20
- [14] P.W. Wachulak, M.C. Marconi, R. Bartels, C.S. Menoni, J.J. Rocca, J. Opt. Soc. Am. B 25, 1811 (2008), doi: 10.1364/JOSAB.25.001811
- [15] G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C.S. Menoni, M.C. Marconi, J.J. Rocca, W. Chao, Opt. Lett. 30, 2095 (2005), doi: 10.1364/OL.30.002095
- [16] H. Legall, G. Blobel, H. Stiel, W. Sandner, C. Seim, P. Takman, D.H. Martz, M. Selin, U. Vogt, Opt. Expr. 20, 18362 (2012), doi: 10.1364/OE.20.018362
- [17] M. Kado, M. Kishimoto, S. Tamotsu, K. Yasuda, M. Aoyama, K. Shinohara, X-Ray Lasers Coher. X-Ray Sourc. Devel. Appl. X 8849, 88490C (2013), doi: 10.1117/12.2022332
- [18] P.W. Wachulak, A. Bartnik, M. Skorupka, J. Kostecki, R. Jarocki, M. Szczurek, Ł. Wegrzynski, T. Fok, H. Fiedorowicz, Appl. Phys. B 111, 239 (2013), doi: 10.1007/s00340-012-5324-y
- [19] P. Wachulak, A. Torrisi, M.F. Nawaz, A. Bartnik, D. Adjei, Š. Vondrová, J. Turňová, A. Jančarek, J. Limpouch, Microsc. Microanal. 21, 1214 (2015), doi: 10.1017/S1431927615014750
- [20] P.W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, Ł. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Appl. Phys. B 118, 573 (2015), doi: 10.1007/s00340-015-6044-x
- [21] P.W. Wachulak, A. Torrisi, A. Bartnik, Ł. Węgrzyński, T. Fok, H. Fiedorowicz, Appl. Phys. B 123, 1 (2016), doi: 10.1007/s0034
- [22] A. Torrisi, P. Wachulak, Ł. Węgrzyński, T. Fok, A. Bartnik, T. Parkman, Š. Vondrová, J. Turňová, B.J. Jankiewicz, J. Microsc. 265, 251 (2017), doi: 10.1111/jmi.12494
- [23] M.G. Ayele, J. Czwartos, D. Adjei, P. Wachulak, I.U. Ahad, A. Bartnik, Ł. Wegrzynski, M. Szczurek, R. Jarocki, H. Fiedorowicz, Acta Phys. Pol. A 129, 237 (2016), doi: 10.12693/APhysPolA.129.237
- [24] K. Otomo, T. Hibi, Y. Kozawa, Microscopy 64, 227 (2015), doi: 10.1093/jmicro/dfv036
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z2p13kz