Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 2 | 263-266
Article title

Comparison of Methods in Studies of Cell Death Mechanisms

Title variants
Languages of publication
While studying the influence of ionizing radiation or certain chemical agents on cells, it is crucial to not only determine cytotoxicity, but also to follow cell death mechanisms. There are different methods to screen processes of cell death and still very important question remains unanswered about differences in results that could be caused by various experimental steps in procedures. Based on literature review two protocols of cell death determination were compared. First protocol regarded collecting cells floating in medium before trypsinization and following centrifugation of them. In the second protocol floating cells were discarded and attached ones were stained and fixed. In all experiments three different untreated cell lines (A172, DU145 as cancer cell lines and in comparison, fibroblasts (FB CCL 110), as a non- cancerous cell line) were used to test applied protocols. Cells were cultured and death processes were examined at different time points up to 120 h. Compared protocols showed statistically significant differences, especially in terms of necrosis, which was higher when included floating cells from culture medium and then centrifuging them. Therefore, presented results show importance of choosing a valid experimental procedure in case of evaluating cells viability and types of cell death pathways quantitatively.
Physical description
  • [1] S. Orrenius, P. Nicotera, B. Zhivotovsky, Toxicol. Sci. 119, 3 (2011), doi: 10.1093/toxsci/kfq268
  • [2] G. Kroemer et al., Cell Death Differ. 16, 3 (2009), doi: 10.1038/cdd.2008.150
  • [3] M.J. Berridge, Cell Signal. Biol. 6, csb0001011 (2014), doi: 10.1042/csb0001011
  • [4] A. Bundscherer, M. Malsy, R. Lange, P. Hofmann, T. Metterlein, B.M. Graf, M. Gruber, Anticancer Res. 33, 3201 (2013)
  • [5] U. Batista, M. Garvas, M. Nemec, M. Schara, P. Veranic, T. Koklic, Cell Biol. Int. 34, 663 (2010), doi: 10.1042/CBI20090276
  • [6] B.C. Sutradhar, J. Park, G. Hong, S.H. Choi, G. Kim, Pak. Vet. J. 30, 232 (2010)
  • [7] I.I. Katkov, P. Mazur, Cell Biochem. Biophys. 31, 231 (1999), doi: 10.1007/BF02738241
  • [8] I.I. Katkov, P. Mazur, I.I. Katkov, J. Androl. 19, 232 (1998), doi: 10.1002/j.1939-4640.1998.tb01993.x
  • [9] D.I.C. Wang, T.J. Sinskey, R.E. Gerner, R.P. De Filippi, Biotechnol. Bioeng. 10, 641 (1968), doi: 10.1002/bit.260100509
  • [10] D. Son, T. Choi, H. Yeo, J. Kim, K. Han, Ann. Plast. Surg. 72, 589 (2014), doi: 10.1097/SAP.0b013e318268a85d
  • [11] W. Strober, Curr. Protoc. Immunol. 111, 1 (2015), doi: 10.1002/0471142735.ima03bs111
  • [12] F. Widdel, Grundpraktikum Mikrobiol. 4, Universität Bremen, Bremen 2007
  • [13] B.G. Hall, H. Acar, A. Nandipati, M. Barlow, Mol. Biol. Evol. 31, 232 (2014), doi: 10.1093/molbev/mst187
  • [14] L.C. Crowley, A.P. Scott, B.J. Marfell, J.A. Boughaba, G. Chojnowski, N.J. Waterhouse, Cold Spring Harb. Protoc. 2016, 647 (2016), doi: 10.1101/pdb.prot087163
  • [15] O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, G. Kroemer, Nat. Rev. Drug Discov. 10, 221 (2011), doi: 10.1038/nrd3373
  • [16] A.M. Chinnaiyan, U. Prasad, S. Shankar, D.A. Hamstra, M. Shanaiah, T.L. Chenevert, B.D. Ross, A. Rehemtulla, Proc. Natl. Acad. Sci. USA 97, 1754 (2000), doi: 10.1073/pnas.030545097
  • [17] T. Hietanen, M. Pitkänen, M. Kapanen, P.L. Kellokumpu-Lehtinen, Int. J. Radiat. Biol. 92, 71 (2016), doi: 10.3109/09553002.2016.1115136
  • [18] Y. Zhang, J. Guo, Y. Qi, Q. Shao, J. Liang, J. Radiat. Res. Appl. Sci. 7, 274 (2014), doi: 10.1016/j.jrras.2014.05.003
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.