PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 2 | 228-231
Article title

Electrochemical Characterization of Ca₆₅Mg₁₅Zn₂₀ Amorphous Alloy in Selected Physiological Fluids

Content
Title variants
Languages of publication
EN
Abstracts
EN
The corrosion behavior of the bulk glassy samples of Ca₆₅Mg₁₅Zn₂₀ alloy was studied by electrochemical measurements and immersion tests in a simulated body fluid, physiological fluid, and the Ringer solution. The results of immersion show that the volume of H₂ evolved after 2 h in simulated body fluid (29.8 ml/cm²) is the highest in comparison with the results of measurements conducted in physiological fluid (11.3 ml/cm²) and the Ringer solution (7.4 ml/cm²). The electrochemical measurements indicated a shift of the corrosion potential (E_{corr}) from -1.58 V for plate tested in a physiological fluid to -1.56 V and -1.54 V for samples immersed in the Ringer solution and simulated body fluid, adequately. The X-ray diffraction measurements were used to determine composition of corrosion products. The corrosion products were mainly identified to be calcium carbonates and calcium/magnesium hydroxides.
Keywords
Contributors
author
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, S. Konarskiego 18a, 44-100 Gliwice, Poland
author
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, S. Konarskiego 18a, 44-100 Gliwice, Poland
author
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, S. Konarskiego 18a, 44-100 Gliwice, Poland
author
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, S. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, S. Konarskiego 18a, 44-100 Gliwice, Poland
References
  • [1] J.Q. Wang, J.Y. Qin, X.N. Gu, Y.F. Zheng, H.Y. Bai, J. Non-Cryst. Solids 357, 1232 (2011), doi: 10.1016/j.jnoncrysol.2010.11.046
  • [2] M. Salahshoor, Y. Guo, Materials 5, 135 (2012), doi: 10.3390/ma5010135
  • [3] H.F. Li, X.H. Xie, K. Zhao, Y.B. Wang, Y.F. Zheng, W.H. Wang, L. Qin, Acta Biomater. 9, 8561 (2013), doi: 10.1016/j.actbio.2013.01.029
  • [4] Y.N. Zhang, G.J. Rocher, B. Briccoli, D. Kevorkov, X.B. Liu, Z. Altounian, M. Medraj, J. Alloys Comp. 552, 88 (2013), doi: 10.1016/j.jallcom.2012.10.089
  • [5] H.F. Li, Y.B. Wang, Y. Cheng, Y.F. Zheng, Mater. Lett. 64, 1462 (2010), doi: 10.1016/j.matlet.2010.03.060
  • [6] R. Babilas, A. Bajorek, W. Simka, D. Babilas, Electrochim. Acta 209, 632 (2016), doi: 10.1016/j.electacta.2016.05.065
  • [7] T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006), doi: 10.1016/j.biomaterials.2006.01.017
  • [8] E. McCafferty, Corros. Sci. 47, 3202 (2005), doi: 10.1016/j.corsci.2005.05.046
  • [9] Z. Shi, A. Atrens, Corros. Sci. 53, 226 (2011), doi: 10.1016/j.corsci.2010.09.016
  • [10] R. Nowosielski, A. Bajorek, R. Babilas, J. Non-Cryst. Solids 447, 126 (2016), doi: 10.1016/j.jnoncrysol.2016.05.037
  • [11] Y.B. Wang, X.H. Xie, H.F. Li, X.L. Wang, M.Z. Zhao, E.W. Zhang, Y.J. Bai, Y.F. Zheng, L. Qin, Acta Biomaterials 7, 3196 (2011), doi: 10.1016/j.actbio.2011.04.027
  • [12] J. Dahlman, O.N. Senkov, J.M. Scott, D.B. Miracle, Mater. Trans. 48, 1850 (2007), doi: 10.2320/matertrans.MJ200732
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z2p04kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.