PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 194-200
Article title

On the Nonlinear Effects of Magnetoacoustic Perturbations in Optically Thin Quasi-Isentropic Plasmas

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nonlinear effects of planar magnetosound perturbations in a plasma are discussed. Plasma is non-adiabatic due to optically thin radiation and external heating. For these reasons, thermal instability of a plasma may appear which makes it acoustically active. The plasma is assumed to be initially homogeneous ideal gas with infinite electrical conductivity permeated by a straight magnetic field which is orthogonal to the trajectories of gas particles. The instantaneous dynamic equations which describe nonlinear effects of intense sound in quasi-isentropic plasma, are derived. Nonlinear interaction of periodic and aperiodic magnetoacoustic perturbations with the non-wave modes, are discussed. The conclusions concern dissipative or active behavior of magnetoacoustic perturbations which is determined by the kind of the heating-cooling function.
Keywords
EN
Year
Volume
133
Issue
1
Pages
194-200
Physical description
Dates
published
2018-01
received
2017-04-04
(unknown)
2017-11-02
Contributors
author
  • Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
author
  • Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
References
  • [1] V.M. Nakariakov, C.A. Mendoza-Briceńo, M.H. Ibáńez, Astrophys. J. 528, 767 (2000), doi: 10.1086/308195
  • [2] G.B. Field, Astrophys. J. 142, 531 (1965), doi: 10.1086/148317
  • [3] R. Chin, E. Verwichte, G. Rowlands, V.M. Nakariakov, Phys. Plasmas 17, 107 (2010), doi: 10.1063/1.3314721
  • [4] A. Kelly, V.M. Nakariakov, SOHO 13 Waves, Oscillations and Small- Scale Transients Events in the Solar Atmosphere: Joint View from SOHO and TRACE, Ed. H. Lacoste, ESA Special Publication, Vol. 547, 2004, p. 483 http://sci.esa.int/jump.cfm?oid=33297
  • [5] L.P. Singh, R. Singh, S.D. Ram, Astrophys. Space Sci. 342, 371 (2012), doi: 10.1007/s10509-012-1189-0
  • [6] R. Shyam, V.D. Sharma, J. Sharma, AIAA J. 19, 1246 (1981), doi: 10.2514/3.60060
  • [7] A.I. Osipov, A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992), doi: 10.1070/PU1992v035n11ABEH002275
  • [8] R.Z. Sagdeev, A.A. Galeev, Nonlinear Plasma Theory, Benjamin, New York 1969
  • [9] V.I. Petviashvili, O.A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere, Gordon and Breach, Berlin 1992, p. 1
  • [10] P.K. Shukla, L. Stenflo, in: Nonlinear MHD Waves and Turbulence, Lecture Notes in Solar Phys., Eds. T. Passot, P.-L. Sulem, Springer, Berlin 1999, p. 1
  • [11] N.E. Molevich, Acoust. Phys. 47, 102 (2001), doi: 10.1134/1.1340086
  • [12] O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Plenum, New York 1977, doi: 10.1007/978-1-4899-4794-9
  • [13] M. Hamilton, D. Blackstock, Nonlinear Acoustics, Academic Press, New York 1998
  • [14] A. Perelomova, Acta. Phys. Pol. A 130, 727 (2016), doi: 10.12693/APhysPolA.130.727
  • [15] A. Perelomova, Archiv. Acoust. 41, 691 (2016), doi: 10.1515/aoa-2016-0066
  • [16] V.D. Sharma, L.P. Singh, R. Ram, Phys. Fluids 30, 1572 (1987), doi: 10.1063/1.866222
  • [17] M.H. Ibáńez, S.A. Parravano, Astrophys. J. 424, 763 (1994), doi: 10.1086/173929
  • [18] J.F. Vesecky, S.K. Antiochos, J.H. Underwood, Astrophys. J. 233, 987 (1979), doi: 10.1086/157462
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p32kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.