PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 179-185
Article title

Theoretical Study of the Electron Transport through Aromatic Molecular Wires with Different Aromatic Rings

Content
Title variants
Languages of publication
EN
Abstracts
EN
Designing molecular systems for molecular electronics or for solar energy conversion that are capable of moving charge efficiently over long distances through molecular bridges requires a fundamental understanding of electron transport in donor-bridge-acceptor systems. In this paper theoretical investigation was performed on electron transport properties of 4-amino 4-nitro biphenyl (DBA-based molecule that was sandwiched between two gold surfaces). Dependence of the molecular electronic structure of the gold-molecule complex on the external electric field was studied, too. On the other hand, the electronic conduction was analyzed from the change in the shape of molecular orbital and the evolution of the highest occupied-lowest occupied molecular orbitals gap of the gold-molecule complex under the influence of the electric field. Values of potential barrier that were determined experimentally and the obtained results are reported in this paper.
Publisher

Year
Volume
133
Issue
1
Pages
179-185
Physical description
Dates
published
2018-01
received
2017-01-20
(unknown)
2017-10-02
(unknown)
2017-10-22
Contributors
author
  • Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
author
  • Department of Chemistry, Young Researchers Club, Quchan Branch, Islamic Azad University, Quchan, Iran
References
  • [1] L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones, D.L. Allara, J.M. Tour, P.S. Weiss, Science 271, 1705 (1996), doi: 10.1126/science.271.5256.1705
  • [2] M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997), doi: 10.1126/science.278.5336.252
  • [3] R.M. Metzger, B. Chen, U. Holpfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer, G.J. Ashwell, J. Am. Chem. Soc. 119, 10455 (1997), doi: 10.1021/ja971811e
  • [4] D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols, Nature 408, 67 (2000), doi: 10.1038/35040518
  • [5] R.P. Andres, J.O. Bielefeld, J.I. Henderson, B.D. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, R.G. Osifchin, Science 273, 1690 (1997), doi: 10.1126/science.273.5282.1690
  • [6] V. Capek, T. Mancal, Europhys. Lett. 48, 365 (1999), doi: 10.1063/1.3665227
  • [7] G. Ho, J.R. Heath, M. Kondratenko, D.F. Perepichka, K. Arseneault, M. Pezolet, M.R. Bryce, Chem. Eur. J. 11, 2914 (2005), doi: 10.1002/chem.200401121
  • [8] N.J. Geddes, J.R. Sambles, D.J. Jarvis, W.G. Parker, Appl. Phys. Lett. 56, 1916 (1990), doi: 10.1063/1.103043
  • [9] A.C. Brady, B. Hodder, A.S. Martin, J.R. Sambles, C.P. Ewels, R. Jones, P.R. Briddon, A.M. Musa, C.A. Panetta, J. Mater. Chem. 9, 2271 (1999), doi: 10.1039/A902107H
  • [10] R.M. Metzger, J.W. Baldwin, W.J. Shumate, I.R. Peterson, P. Mani, G.J. Mankey, T. Morris, G. Szulczewski, S. Bosi, M. Prato, A. Comito, Y. Rubin, J. Phys. Chem. B 107, 1021 (2003), doi: 10.1039/b602203k
  • [11] P. Kornilovich, A.M. Bratkovski, S.-C. Chang, R.S. Williams, US Patent No. 66,70631, 2003
  • [12] W.B. Davis, W.A. Svec, M.A. Ratner, M.R. Wasielewski, Nature 396, 60 (1998), doi: 10.1038/23912396
  • [13] W.B. Davis, M.A. Ratner, M.R. Wasielewski, J. Am. Chem. Soc. 123, 7877 (2001), doi: 10.1021/ja010330z
  • [14] S. Sitha, K. Bhanuprakash, J. Mol. Struct. Theochem. 761, 31 (2006), doi: 10.1021/jp011888w
  • [15] J.C. Ellenbogen, J.C. Love, Proc. IEEE 88, 386 (2000), doi: 10.1016/j.physe.2011.03.018
  • [16] Z. Bayat, S. Daneshnia, S.J. Mahdizadeh, J. Physica E 43, 1569 (2011), doi: 10.1016/j.physe.2011.03.018
  • [17] H.Y. Hwang, S.-W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996), doi: 10.1103/PhysRevLett.77.2041
  • [18] M. Ziese, Phys. Rev. B 60, R738 (1999), doi: 10.1103/PhysRevB.60.R721
  • [19] P.K. Siwach, H.K. Singh, O.N. Srivastava, J. Phys. Condens. Matter 20, 273201 (2008)), doi: 10.1088/0953-8984/20/27/273201
  • [20] J.G. Kushmerick, D.B. Holt, S.K. Pollack, M.A. Ratner, J.C. Yang, T.L. Schull, J. Naciri, M.H. Moore, R. Shashidhar, J. Am. Chem. Soc. 124, 10654 (2002), doi: 10.1021/ja027090n
  • [21] K.W. Hipps, Science 294, 536 (2001), doi: 10.1126/science.1065708
  • [22] J.M. Beebe, V.B. Engelkes, L.L. Miller, C.D. Frisbie, J. Am. Chem. Soc. 124, 11268 (2002), doi: 10.1021/ja0268332
  • [23] Y. Xue, S. Datta, S. Hongy, R. Reifenberger, J.I. Henderson, C.P. Kobiak, Phys. Rev. B 59, R7852 (1999), doi: 10.1103/PhysRevB.59.12604
  • [24] S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica, M.A. Ratner, J. Chem. Phys. 111, 6997 (1999), doi: 10.1063/1.480096
  • [25] X. Yin, Y. Li, Y. Zhang, P. Li, J. Zhao, Chem. Phys. Lett. 422, 111 (2006), doi: 10.1016/j.cplett.2006.02.020
  • [26] K. Prashant, P.K. Jain, J. Phys. Chem. B 110, 7238-48 (2006), doi: 10.1021/jp057170o
  • [27] P.K. Jain, Struct. Chem. 16, 421 (2005), doi: 10.1007/s11224-005-6350-8
  • [28] C. Majumder, T.M. Briere, H. Mizuseki, Y. Kawazoe, J. Chem. Phys. 117, 7669 (2002), doi: 10.1063/1.1509053
  • [29] H. Fueno, M. Hayashi, K. Nin, A. Kubo, Y. Misaki, K. Tanaka, Curr. Appl. Phys. 6, 939 (2006), doi: 10.1016/j.cap.2005.01.051
  • [30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Suzerain, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09 (now Gaussian 16), Gaussian Inc., Wallingford (CT) 2016 http://gaussian.com/gaussian16/
  • [31] S.S. Mallajosyula, J.C. Lin, D.L. Cox, S.K. Pati, R.R.P. Singh, Phys. Rev. Lett. 101, 176805 (2008), doi: 10.1103/PhysRevLett.101.176805
  • [32] I. Amlani, A.M. Rawlett, L.A. Nagahara, R.K. Tsui, Appl. Phys. Lett. 80, 2761 (2002), doi: 10.1088/0957-4484/14/3/305
  • [33] Y. Ye, M. Zhang, J. Zhao, J. Mol. Struct. (Theochem) 822, 12 (2007), doi: 10.1016/j.theochem.2007.07.007
  • [34] Y. Li, J. Zhao, X. Yin, G. Yin, J. Phys. Chem. A 110, 11130 (2006), doi: 10.1021/jp0557058
  • [35] C. Majumder, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. A 105, 9454 (2001), doi: 10.1021/jp011888w
  • [36] C. Majumder, T. Briere, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. A 106, 7911 (2002), doi: 10.1021/jp0258560
  • [37] H. Mizuseki, K. Niimura, C. Majumder, Y. Kawazoe, Computat. Mater. Sci. 27, 161 (2003), doi: 10.1016/S0927-0256(02)00440-8
  • [38] K. Sohlberg, N. Vedova-Brook, J. Comput. Theo. Nanosci. 1, 256 (2004), doi: 10.1103/PhysRevB.67.113408
  • [39] H. Chen, J.Q. Lu, J. Wu, R. Note, H. Mizuseki, Y. Kawazoe, Phys. Rev. B 67, 113408 (2003), doi: 10.1103/PhysRevB.67.113408
  • [40] J.C. Ellenbogen, J.C. Love, Proc. IEEE 88, 386 (2000), doi: 10.1109/5.838115
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p30kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.