Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 126-128

Article title

Theoretical Evaluation of Thermal Properties of TiO₂ Anatase and Rutile by using Einstein-Debye Approximation

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we propose a new approach to accurate calculation of heat capacities at constant volume and pressure of TiO₂ anatase and rutile. The evaluation model is based on the Einstein-Debye approximation which has been extensively used in solid state physics. The application of proposed approach to anatase and rutile titanium dioxide computations results is shown to be well numerically satisfactory. This approach is valid in wide temperature ranges and can be suggested for accurate evaluation of thermal properties of solids. The calculation results are in well agreement with the literature values reported by other studies.

Year

Volume

133

Issue

1

Pages

126-128

Physical description

Dates

published
2018-01
received
2017-06-19
(unknown)
2017-10-20
(unknown)
2017-12-11

Contributors

author
  • Amasya University, Taşova Vocational School, Amasya, Turkey

References

  • [1] W. Naffouti, T.B. Nasr, H. Meradji, N. Kamoun-Turki, J. Electron. Mater. 45, 5096 (2016), doi: 10.1007/s11664-016-4713-0
  • [2] Y.Y. Yu, W.C. Chien, Y.H. Ko, S.H. Chen, Thin Solid Films 520, 1503 (2011), doi: 10.1016/j.tsf.2011.08.001
  • [3] J. Ben Naseur, R. Mechiakh, F. Bousbih, R. Chtourou, Appl. Surf. Sci. 257, 10699 (2011), doi: 10.1016/j.apsusc.2011.07.082
  • [4] S.N. Ding, B. Gao, D. Shan, Y. Sun, S. Cosnier, Biosens. Bioelectron. 39, 342 (2013), doi: 10.1016/j.bios.2012.07.065
  • [5] D. de Ligny, P. Richet, E.F. Westrum, Jr., J. Roux, Phys. Chem. Miner. 29, 267 (2002), doi: 10.1007/s00269-001-0229-z
  • [6] L. Liu, D. Peng, Q.L. Ma, Z.G. Jiang, J.W. Wang, J.H. Qian, Micro-Nano Lett. 11, 1 (2016), doi: 10.1049/mnl.2015.0108
  • [7] T. Mitsuhashi, Y. Takahashi, Yogyo-Kyokai-Shi 88, 305 (1980), doi: 10.2109/jcersj1950.88.1018_305
  • [8] C.H. Shomate, J. Am. Chem. Soc. 69, 218 (1947), doi: 10.1021/ja01194a008
  • [9] M. Saeedian, M. Mahjour-Shafiei, E. Shojaee, M.R. Mohammadizadeh, J. Comput. Theor. Nanosci. 9, 616 (2012), doi: 10.1166/jctn.2012.2070
  • [10] T.R. Sandin, P.H. Keesom, Phys. Rev. 177, 1370 (1969), doi: 10.1103/PhysRev.177.1370
  • [11] L.J. Zhang, D.J. Singh, Phys. Rev. B 81, 245119 (2010), doi: 10.1103/PhysRevB.81.245119
  • [12] S. Azam, S.A. Khan, F.A. Shah, S. Muhammad, H.U. Din, R. Khenata, Intermetallics 55, 184 (2014), doi: 10.1016/j.intermet.2014.08.001
  • [13] D. Bayerl, E. Kioupakis, Phys. Rev. B 91, 165104 (2015), doi: 10.1103/PhysRevB.91.165104
  • [14] M.A. Blanco, A. Martin Pendas, E. Francisco, J.M. Recio, R. Franco, J. Mol. Struct. (Theochem.) 368, 245 (1996), doi: 10.1016/S0166-1280(96)90571-0
  • [15] B.M. Askerov, M. Cankurtaran, Phys. Status Solidi B 185, 341 (1994), doi: 10.1002/pssb.2221850204
  • [16] M. Cankurtaran, B.M. Askerov, Phys. Status Solidi B 194, 499 (1996), doi: 10.1002/pssb.2221940207
  • [17] I.I. Guseinov, B.A. Mamedov, Int. J. Thermophys. 28, 1420 (2007), doi: 10.1007/s10765-007-0256-1
  • [18] E. Francisco, M.A. Blanco, G. Sanjurjo, Phys. Rev. B 63, 094107 (2001), doi: 10.1103/PhysRevB.63.094107
  • [19] L.D. Landau, E.M. Lifshits, Statistical Physics, Pergamon Press, London 1980
  • [20] I.S. Gradsteyn, I.M. Ryzhik, Tables of Integrals, Sums, Series and Product, 4th ed., Academic Press, New York 1980
  • [21] S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goaten, B.F. Woodfield, 236 Am. Mineral. 94, (2009), doi: 10.2138/am.2009.3050

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app133z1p23kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.