PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 118-120
Article title

Calculation Method for the Bandgap of Antimonide Based Multicomponent Alloys

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
As the most important material parameter of semiconductor, bandgap is necessary to be investigated to meet the design requirements of the high-performance optoelectronic devices. A new method of is proposed to calibrate the bandgap of antimonide based multi-component alloys with considering the effect of spin-orbit splitting off bands and the doublet degeneracy of valance band on the bandgaps of Sb-containing materials. A correction factor is introduced in the conventional calculation, and the spin-orbit splitting method is proposed. Besides, the In_xGa_{1-x}As_ySb_{1-y} films with different compositions are grown on GaSb substrates by molecular beam epitaxy, and the corresponding bandgaps are obtained by photoluminescence to test the accuracy and reliability of this new method. An error rate analysis reveals that the α calculated by the spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the Moon method, which means that the new method can calculate the antimonide multicomponent more accurately with some applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.
Keywords
EN
Publisher

Year
Volume
133
Issue
1
Pages
118-120
Physical description
Dates
published
2018-01
received
2016-07-29
Contributors
author
  • Changchun Observatory/NAO, Chinese Academy of Sciences, Changchun 130117, China
author
  • Changchun Observatory/NAO, Chinese Academy of Sciences, Changchun 130117, China
author
  • Changchun Observatory/NAO, Chinese Academy of Sciences, Changchun 130117, China
author
  • Changchun Observatory/NAO, Chinese Academy of Sciences, Changchun 130117, China
author
  • Changchun Observatory/NAO, Chinese Academy of Sciences, Changchun 130117, China
References
  • [1] R. Ahmed, S.J. Hashemifar, H.H. Akbarzadeh, Commun. Theor. Phys. 3, 52 (2009), doi: 10.1088/0253-6102/52/3/28
  • [2] H.W. Xu, Y.Q. Ning, Y.G. Zeng, X. Zhang, L. Qin, Opt. Precision Eng. 3, 21 (2013), doi: 10.3788/OPE.20132103.0590
  • [3] D. Liu, Y.Q. Ning, J.L. Zhang, X. Zhang, L.J. Wang, Opt. Precision Eng. 10, 20 (2012), doi: 10.3788/OPE.20122010.2147
  • [4] P.J. Collings, Am. J. Phys. 3, 48 (1980), doi: 10.1119/1.12172
  • [5] K. Busch, S. John, Phys. Rev. E 3, 58 (1998), doi: 10.1103/PhysRevE.58.3896
  • [6] S. Adachi, J. Appl. Phys. 10, 61 (1987), doi: 10.1063/1.338352
  • [7] R.L. Moon, G.A. Antypas, L.W. James, J. Electron. Mater. 3, 3 (1974), doi: 10.1007/BF02655291
  • [8] N. An, Z.G. Zhan, B.T. He, P. Lu, X. Fang, Z.P. Wei, G.J. Liu, High Power Laser Part. Beams 26, 11 (2014), doi: 10.11884/HPLPB201426.111008
  • [9] R.J. Kumar, R.J. Gutmann, J. Borrego, P.S. Dutta, C.A. Wang, R.U. Martinelli, G. Nichols, J. Electron. Mater. 33, 2 (2004), doi: 10.1007/s11664-004-0276-6
  • [10] K. Shim, H. Rabitz, P. Dutta, J. Appl. Phys. 12, 88 (2000), doi: 10.1063/1.1323520
  • [11] J.C. DeWinter, M.A. Pollack, A.K.J.L. Zyskind, J. Electron. Mater. 6, 14 (1985), doi: 10.1007/BF02654308
  • [12] W.G. Bi, A.Z. Li, Y.L. Zheng, J.X. Wang, C.C. Li, J. Infrared Millim. Waves 5, 11 (1992)
  • [13] J.L. Zyskind, C.A. Burrus, C. Caneau, A.G. Dentai, M.A. Pollack, A.K. Srivastava, J.E. Bowers, J.C. DeWinter, Proc. SPIE 722, (1987), doi: 10.1117/12.937666
  • [14] P.S. Dutta, A.G. Ostrogorsky, J. Cryst. Growth 198-199, 384 (1999), doi: 10.1016/S0022-0248(98)01222-6
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p21kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.