PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 86-93
Article title

Screening Dependence Study of Superconducting State Parameters of 4d- and 5d-Transition Metals Based Binary Alloys

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Screening dependence study of the superconductivity in 4d- and 5d-transition metals based binary alloys was performed using the model pseudopotential approach, which was found quite successful in explaining superconductivity in metals, alloys, and metallic glasses. In the present work the superconducting state parameters viz. electron-phonon coupling strength λ, the Coulomb pseudopotential μ*, transition temperature T_{C}, isotope effect exponent α and effective interaction strength N₀ V of some transition metals based binary alloys of 4d- and 5d-transition metals groups were determined in the BCS-Eliashberg-McMillan framework. A considerable influence of various exchange and correlation functions on λ and μ* is found from the present study. The present results of the superconducting state parameters are found in qualitative agreement with the available experimental figures wherever exist.
Publisher

Year
Volume
133
Issue
1
Pages
86-93
Physical description
Dates
published
2018-01
Contributors
author
  • Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat, India
author
  • Department of Physics, Government Engineering College, Valsad 396 001, South Gujarat, India
author
  • Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat, India
References
  • [1] A.V. Narlikar, S.N. Ekbote, Superconductivity and Superconducting Materials, South Asian Publ., New Delhi, Madras 1983
  • [2] P.B. Allen, Handbook of Superconductivity, Ed. C.P. Poole Jr., Academic Press, New York 1999, p. 478
  • [3] A.M. Vora, J. Supercond. Novel Magn. 24, 2203 (2011), doi: 10.1007/s10948-011-1182-9
  • [4] A.M. Vora, Mod. Phys. Lett. B 22, 2881 (2008), doi: 10.1142/S0217984908017369
  • [5] A.M. Vora, J. Supercond. Novel Magn. 20, 387 (2007), doi: 10.1007/s10948-007-0234-7
  • [6] A.M. Vora, Physica C 470, 475 (2010), doi: 10.1016/j.physc.2010.04.001
  • [7] A.M. Vora, Bull. Mater. Sci. 34, 1517 (2011), doi: 10.1007/s12034-011-0353-4
  • [8] A.M. Vora, J. Non-Cryst. Solids 357, 2039 (2011), doi: 10.1016/j.jnoncrysol.2011.02.023
  • [9] A.M. Vora, J. Supercond. Novel Magn. 24, 2065 (2011), doi: 10.1007/s10948-011-1170-0
  • [10] A.M. Vora, Phys. Scr. 84, 055601(1) (2011), doi: 10.1088/0031-8949/84/05/055601
  • [11] A.M. Vora, Adv. Mater. Lett. 3, 321 (2012), doi: 10.5185/amlett.2012.4339
  • [12] A.M. Vora, Bulg. J. Phys. 39, 215 (2012)
  • [13] A.M. Vora, Indian J. Phys. 86, 1087 (2012), doi: 10.1007/s12648-012-0184-1
  • [14] A.M. Vora, J. Nano-Electron. Phys. 4, 04010-1 (2012)
  • [15] A.M. Vora, Chiang Mai J. Sci. 40, 507 (2013)
  • [16] A.M. Vora, J. Supercond. Novel Magn. 28, 2293 (2015), doi: 10.1007/s10948-015-3035-4
  • [17] A.M. Vora, J. Contemp. Phys. (Armenian Acad. Sci.) 43, 231 (2008), doi: 10.3103/S1068337208050046
  • [18] V. Singh, H. Khan, K.S. Sharma, Indian J. Pure Appl. Phys. 32, 915 (1994)
  • [19] S.C. Jain, C.M. Kachhava, Phys. Status Solidi B 101, 619 (1980), doi: 10.1002/pssb.2221010222
  • [20] R.C. Dynes, Phys. Rev. B 2, 644 (1970), doi: 10.1103/PhysRevB.2.644
  • [21] W.L. McMillan, Phys. Rev. 167, 331 (1968), doi: 10.1103/PhysRev.167.331
  • [22] P.B. Allen, M.L. Cohen, Phys. Rev. 187, 525 (1969), doi: 10.1103/PhysRev.187.525
  • [23] W. Weaire, Proc. Phys. Soc. 92, 965 (1967), doi: 10.1088/0370-1328/92/4/317
  • [24] S.K. Bose, J. Phys. Condens. Matter 21, 025602 (2009), doi: 10.1088/0953-8984/21/2/025602
  • [25] B.T. Matthias, in: Progress in Low Temperature Physics, Eds. C.J. Gorter, Vol. 2, North-Holland, Amsterdam 1957
  • [26] B.T. Matthias, Physica 69, 54 (1973), doi: 10.1016/0031-8914(73)90199-7
  • [27] J. Peretti, Phys. Lett. 2, 275 (1962), doi: 10.1016/0031-9163(62)90035-5
  • [28] D.G. Pettifor, J. Phys. F Met. Phys. 7, 1009 (1977), doi: 10.1088/0305-4608/7/6/017
  • [29] V.K. Ratti, R. Evans, B.L. Gyorffy, J. Phys. F Met. Phys. 4, 371 (1974), doi: 10.1088/0305-4608/4/3/010
  • [30] M.H. Patel, A.M. Vora, P.N. Gajjar, A.R. Jani, Physica B 304, 152 (2001), doi: 10.1016/S0921-4526(01)00548-8
  • [31] M.H. Patel, A.M. Vora, P.N. Gajjar, A.R. Jani, Commun. Theor. Phys. 38, 365 (2002), doi: 10.1088/0253-6102/38/3/365
  • [32] W.A. Harrison, Elementary Electronic Structure, World Sci., Singapore 1999
  • [33] R. Taylor, J. Phys. F Met. Phys. 8, 1699 (1978), doi: 10.1088/0305-4608/8/8/011
  • [34] S. Ichimaru, K. Utsumi, Phys. Rev. B 24, 3220 (1981), doi: 10.1103/PhysRevB.24.3220
  • [35] B. Farid, V. Heine, G. Engel, I.J. Robertson, Phys. Rev. B 48, 11602 (1993), doi: 10.1103/PhysRevB.48.11602
  • [36] A. Sarkar, D. Sen, H. Haldar, D. Roy, Mod. Phys. Lett. B 12, 639 (1998), doi: 10.1142/S0217984998000755
  • [37] W.H. Butler, Phys. Rev. B 15, 5267 (1977), doi: 10.1103/PhysRevB.15.5267
  • [38] R. Hasegawa, Glassy Metals: Magnetic, Chemical and Structural Properties, CRC Press, Florida 1980
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p16kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.