As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
Barium cerate (BaCeO₃) is one of the preferred additions to bulk YBa₂Cu₃O₇ single-grain superconductors to inhibit the growth of Y₂BaCuO₅ particles. The present paper investigates synthesis of very fine barium cerate powder and its use in YBa₂Cu₃O₇ bulk superconductor growth. The crystalline barium cerate was synthesized by oxalate co-precipitation from barium and cerium nitrates. X-ray diffraction in air and vacuum was performed to understand the formation of barium cerate as well as to determinate its crystal structure. Size and shape of BaCeO₃ particles were studied by scanning electron microscopy. The BaCeO₃ was used to grow YBa₂Cu₃O₇ bulk superconductor. Microstructure of prepared YBa₂Cu₃O₇ crystal shows that the barium cerate in the final product is very fine and uniformly distributed throughout the whole YBa₂Cu₃O₇ crystal.
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice, Slovakia
References
[1] P. Diko, D. Volochová, M. Radušovská, K. Zmorayová, M. Šefčíková, V. Antal, K. Jurek, M. Jirsa, J. Kováč, Physica C 494, 31 (2013), doi: 10.1016/j.physc.2013.04.028
[2] M. Murakami, Mod. Phys. Lett. B 4, 163 (1990), doi: 10.1142/S0217984990000234
[3] M. Murakami, K. Yamakuchi, H. Fujimoto, N. Nakamura, T. Taguchi, N. Koshizuka, S. Tanaka, Cryogenics 32, 930 (1992), doi: 10.1016/0011-2275(92)90002-R
[4] K. Nakazato, M. Muralidhary N. Koshizuka, K. Inoue, M. Murakami, Physica C 504, 4 (2014), doi: 10.1016/j.physc.2014.05.009
[5] C.J. Kim, K.B. Kim, I.H. Kuk, G.W. Hong, Physica C 281, 244 (1997), doi: 10.1016/S0921-4534(97)01455-X
[6] C.J. Kim, K.B. Kim, G.W. Hong, Physica C 232, 163 (1994), doi: 10.1016/0921-4534(94)90309-3
[7] P. Diko, M. Šefčíková, M. Kaňuchová, K. Zmorayová, Mater. Sci. Eng. B 151, 7 (2008), doi: 10.1016/j.mseb.2008.03.004
[8] D. Volochová, P. Diko, V. Antal, M. Radušovská, S. Piovarči, J. Cryst. Growth 356, 75 (2012), doi: 10.1016/j.jcrysgro.2012.07.021
[9] D. Volochová, P. Diko, M. Radušovská, S. Piovarči, V. Antal, K. Zmorayová, M. Šefčíková, J. Supercond. Novel Magn. 26, 885 (2013), doi: 10.1007/s10948-012-1933-2
[10] K. Zmorayová, M. Šefčíková, D. Volochová, M. Radušovská, V Antal, S. Piovarči, P. Diko, Phys. Proced. 45, 53 (2013), doi: 10.1016/j.phpro.2013.04.050
[15] D. Medvedev, A. Muraskina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras, Prog. Mater. Sci. 60, 72 (2014), doi: 10.1016/j.pmatsci.2013.08.001
[16] F. Chen, O.T. Sorensen, G. Meng, D. Peng, J. Therm. Anal. 53, 397 (1998), doi: 10.1023/A:1010124905090
[17] F. Chen, O.T. Sorensen, G. Meng, D. Peng, Solid State Ion. 100, 63 (1997), doi: 10.1016/S0167-2738(97)00265-8
[18] V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Kluwer Academic, USA 2003
[19] W.I.F. David, K. Shankland, L.B. McCusker, Ch. Baelrocher, Structure Determination from Powder Diffraction Data, Oxford University Press, USA 2002