PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 68-75
Article title

Specific Features of Content Dependences for Energy Gap in In_{x}Tl_{1-x}I Solid State Crystalline Alloys

Content
Title variants
Languages of publication
EN
Abstracts
EN
A series of In_{x}Tl_{1-x}I (x=0.4-0.9) single crystalline solid state alloys were successfully synthesized by the vertical Bridgman method. For the first time the density functional theory based band structure calculations are performed and features of the band energy dispersion are discussed. Comparison with the experimental energy gap E_{g} obtained from the optical photoconductivity is discussed. An essential role of the localized defects and excitons in formation of the edge photoconductivity is analyzed. Relation between the crystal structure and photoconductivity of the materials studied is discussed. Also the origin of the principal valence and conduction bands is explored. Experimental measurements of the band gap E_{g} by the optical and photoconductivity methods have given opposite dependences with respect to the indium content x. Features of the photoconductivity spectra for different crystallographic directions have been discussed with taking into account the chemical bonds anisotropy.
Keywords
Year
Volume
133
Issue
1
Pages
68-75
Physical description
Dates
published
2018-01
received
2017-09-24
(unknown)
2017-11-15
References
  • [1] P. Bhattacharya, M. Groza, Y. Cui, D. Caudel, T. Wrenn, A. Nwankwo, A. Burger, G. Slack, A.G. Ostrogorsky, J. Cryst. Growth 312, 1228 (2010), doi: 10.1016/j.jcrysgro.2009.12.021
  • [2] I. Nicoara, D. Nicoara, C. Bertorello, G.A. Slack, A.G. Ostrogorsky, M. Groza, A. Burger, MRS Proc. 1341, mrss11-1341-u09-01 (2011), doi: 10.1557/opl.2011.1111
  • [3] F. Dybała, M.P. Polak, J. Kopaczek, P. Scharoch, K. Wu, S. Tongay, R. Kudrawiec, Sci. Rep. 6, 26663 (2016), doi: 10.1038/srep26663
  • [4] R. Browning, P. Plachinda, P. Padigi, R. Solanki, S. Rouvimov, Nanoscale 8, 2143 (2016), doi: 10.1039/c5nr08006a
  • [5] I.V. Kityk, M.I. Kolinko, A.V. Franiv, Ferroelectrics 130, 347 (1992)
  • [6] M.I. Kolinko, I.V. Kityk, A.S. Krochuk, J. Phys. Chem. Solids 53, 1315 (1992), doi: 10.1016/0022-3697(92)90252-9
  • [7] Ya.O. Dovgii, I.V. Kityk, M.I. Kolinko, A.S. Krochuk, A.V. Franiv, M.K. Zamorskii, Phys. Status Solidi B 167, 637 (1991), doi: 10.1002/pssb.2221670225
  • [8] I. Kolinko, A.S. Krotschuk, I.V. Kityk, Phys. Status Solidi B 134, K83 (1992), doi: 10.1002/pssa.2211340237
  • [9] M.I. Kolinko, I.V. Kityk, A.B. Kozhljuk, Acta. Phys. Pol. A 84, 1065 (1993), doi: 10.12693/APhysPolA.84.1065
  • [10] M.I. Kolinko, J. Phys. Condens. Matter 6, 183 (1994), doi: 10.1088/0953-8984/6/1/019
  • [11] Z. Wei, X. Zhao-Peng, W. Hai-Yan, C. Fei-Hong, H. Chang, Acta Phys. Sin. 62, 243101 (2013), doi: 10.7498/aps.62.243101
  • [12] M.I. Kolinko, R.Y. Bibikov, Zeits. Phys. B Condens. Matter 95, 167 (1994), doi: 10.1007/BF01312188
  • [13] M.I. Kolinko, Phys. Rev. B B55, 4007 (1997), doi: 10.1103/PhysRevB.55.4007
  • [14] M.I. Kolinko, A.H. Nevidomskyy, J. Phys. Stud. 4, 437 (2000)
  • [15] M.I. Kolinko, O.V. Bovgyra, Ukr. J. Phys. 46, 707 (2001)
  • [16] A. Franiv, O. Bovgyra, O. Savchyn, Ukr. J. Phys. 51, 269 (2006)
  • [17] X. Zhao-Peng, W. Yong-Zhen, Z. Wei, W. Qian, W. Guo-Qing, Acta Phys. Sin. 63, 147102 (2014), doi: 10.7498/aps.63.147102
  • [18] M. Yoshida, N. Ohno, K. Nakamura, Y. Nakai, J. Phys. Soc. Jpn. 52, 1108 (1983), doi: 10.1143/JPSJ.52.1108
  • [19] K.S. Shah, J.C. Lund, F. Olschner, J. Zhang, L.P. Moy, M.R. Squillante, W.W. Moses, S.E. Derenzo, IEEE Trans. Nucl. Sci. 41, 2715 (1994), doi: 10.1109/23.340638
  • [20] A.V. Churilov, G. Ciampi, H. Kim, W.M. Higgins, L.J. Cirignano, F. Olschner, V. Biteman, M. Minchello, K.S. Shah, J. Cryst. Growth 312, 1221 (2010), doi: 10.1016/j.jcrysgro.2009.10.055
  • [21] Ya.O. Dovgyi, S.V. Ternavska, A.V. Franiv, Ukr. J. Phys. 47, 61 (2002)
  • [22] I.V. Blonskyy, A. Krochuk, T.L. Stetsyshyn, A.V. Franiv, Sov. Phys. Solid State 28, 3136 (1986)
  • [23] N. Ohno, K. Nakamura, Y. Nakai, J. Phys. Soc. Jpn. 56, 2565 (1987), doi: 10.1143/JPSJ.56.2565
  • [24] A.V. Franiv, Herald Lviv. Univ. Phys. Series 30, 92 (1998)
  • [25] L. Helmholz, Z. Kristallogr. 95, 129 (1936)
  • [26] R.E. Jones, D.H. Templeton, Acta Crystallogr. 8, 847 (1955), doi: 10.1107/S0365110X55002594
  • [27] G. Meyer, T. Staffel, Z. Anorg. Allg. Chem. 574, 114 (1989), doi: 10.1002/zaac.655740112
  • [28] D. Becker, H.P. Beck, Z. Kristallogr. 219, 348 (2004), doi: 10.1524/zkri.219.6.348.34636
  • [29] A.I. Kashuba, A.V. Franiv, O.V. Bovgyra, R.S. Brezvin, Funct. Mater. 24, 26 (2017), doi: 10.15407/fm24.01.026
  • [30] A.I. Kashuba, S.V. Apunevych, J. Nano-Electron. Phys. 8, 01010 (2016), doi: 10.21272/jnep.8(1).01010
  • [31] V.G. Korshunova, Phases Equilibrium in Halogenic Systems, Metallurgy, Moscow 1979, p. 180
  • [32] STOE & Cie GmbH, WinXPOW 3.03, Powder Diffraction Software Package, Darmstadt, Germany 2010 http://stoe.com/product/software-powder-xrd/
  • [33] SRM 640b: Silicon Powder 2θ/d-Spacing Standard for X-ray Diffraction, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg (MD) 1987
  • [34] SRM 676: Alumina Internal Standard for Quantitative Analysis by X-ray Powder Diffraction, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg (MD) 2005
  • [35] A. Altomare, G. Campi, C. Cuocci, L. Eriksson, C. Giacovazzo, A. Moliterni, R. Rizzi, P.-E. Werner, J. Appl. Crystallogr. 42, 768 (2009), doi: 10.1107/S0021889809025503
  • [36] The Rietveld Method, IUCr Monographs on Crystallography, Vol. 5, Ed. R.A. Young, Oxford University Press, New York 1993, p. 298
  • [37] J. Rodriguez-Carvajal, Commission on Powder Diffraction (IUCr), Newsletter 26, 12 (2001)
  • [38] T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum 378-381, 118 (2001), doi: 10.4028/www.scientific.net/MSF.378-381.118
  • [39] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20, 139 (1987), doi: 10.1107/S0021889887086965
  • [40] K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011), doi: 10.1107/S0021889811038970
  • [41] R.V. Gamernyk, Y.P. Gnatenko, A.G. Slivka, J. Phys. Stud. 12, 4703 (2008)
  • [42] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Zeits. Kristallogr. 220, 567 (2005), doi: 10.1524/zkri.220.5.567.65075
  • [43] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
  • [43a] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997), doi: 10.1103/PhysRevLett.78.1396
  • [44] D. Vanderbilt, Phys. Rev. B41, 7892 (1990), doi: 10.1103/PhysRevB.41.7892
  • [45] H.J. Monkhorst, J.D. Pack, Phys. Rev. B13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
  • [46] C.A. Gaw, C.R. Kannewurf, Appl. Phys. Lett. 38, 634 (1981), doi: 10.1063/1.92460
  • [47] I.V. Kityk, M.I. Kolinko, A. Krochuk, A. Franiv, Sov. Phys. Solid State 33, 225 (1991)
  • [48] M. Grundmann, The Physics of Semiconductors, Springer-Verlag, Berlin 2006
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p13kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.