PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 39-44
Article title

Study of Point Defect Distributions in Tantalum

Content
Title variants
Languages of publication
EN
Abstracts
EN
We have investigated the point defect distributions in tantalum under irradiation by means of the Marlowe code based on the binary collision approximation. The study is carried out by simulating displacement cascades initiated with primary knock-on atom energies ranging from 5 to 20 keV. The Molière, Born-Mayer and average modified Lenz-Jensen potentials are used to describe the interactions between tantalum atoms. We have examined the creation of damage, the spatial defects distribution, and the vacancy clustering in tantalum. The results show that with an appropriate recombination radius, less than 16% of the created defects constitute permanent Frenkel pairs. Spatial configuration of defects indicates a separation between the two point defect types, vacancies and interstitials. The Molière potential favors the production of a greater number of displaced atoms and the development of voluminous cascades more than the other potentials. The cascade volume distributions deviate clearly from a Gaussian distribution. They are large and very stretched toward higher volumes for all used potentials. Only small vacancy clusters are formed in tantalum under irradiation and about 41% of the produced vacancies are considered as isolated
Keywords
Publisher

Year
Volume
133
Issue
1
Pages
39-44
Physical description
Dates
published
2018-01
received
2017-01-09
(unknown)
2017-10-28
Contributors
author
  • Laboratoire d'Etudes Physico-Chimiques, Université Tahar Moulay, 20000 Saïda, Algeria
author
  • Laboratoire de Microscopie, Microanalyse de la Matière et Spectroscopie Moléculaire, Université Djillali Liabes, 22000 Sidi-Bel-Abbes, Algeria
  • Laboratoire d'Etudes Physico-Chimiques, Université Tahar Moulay, 20000 Saïda, Algeria
author
  • Laboratoire d'Etudes Physico-Chimiques, Université Tahar Moulay, 20000 Saïda, Algeria
author
  • Département de Physique, Université Tahar Moulay, 20000 Saïda, Algeria
References
  • [1] V.A. Ivchenko, IOP Conf. Ser. Mater. Sci. Eng. 110, 012003 (2016), doi: 10.1088/1757-899X/110/1/012003
  • [2] C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, L. Wang, Sci. Rep. 6, 19994 (2016), doi: 10.1038/srep19994
  • [3] E. Zarkadoula, S.L. Daraszewicz, D.M. Duffy, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove, K. Trachenko, J. Phys. Condens. Matter 25, 125402 (2013), doi: 10.1088/0953-8984/25/12/125402
  • [4] R.W. Buckman Jr., JOM 52, 40 (2000), doi: 10.1007/s11837-000-0100-6
  • [5] Y. Huang, N. Maury, N.X. Zhang, T.G. Langdon, IOP Conf. Ser. Mater. Sci. Eng. 63, 012100 (2014), doi: 10.1088/1757-899X/63/1/012100
  • [6] J.B. Lambert, Tantalum and tantalum compounds, in: Kirk-Othmer Encyclopedia of Chemical Technology, Wiley-Interscience, 2007, p. 313, doi: 10.1002/0471238961.200114202180916.a01.pub2
  • [7] P. Jung, W. Schilling, Phys. Rev. B 5, 2046 (1972), doi: 10.1103/PhysRevB.5.2046
  • [8] G. Youngblood, S. Myhra, J.W. DeFord, Phys. Rev. 188, 1101 (1969), doi: 10.1103/PhysRev.188.1101
  • [9] Y. Mishin, A.Y. Lozovoi, Acta Mater. 54, 5013 (2006), doi: 10.1016/j.actamat.2006.06.034
  • [10] R. Ravelo, T.C. Germann, O. Guerrero, Q. An, B.L. Holian, Phys. Rev. B 88, 134101 (2013), doi: 10.1033/PhysRevB.88.134101
  • [11] X.D. Dai, Y. Kong, J.H. Li, B.X. Liu, J. Phys. Condens. Matter 18, 4527 (2006), doi: 10.1088/0953-8984/18/19/008
  • [12] Z.L. Liu, L.C. Cai, X.R. Chen, F.Q. Jing, Phys. Rev. B 77, 024103 (2008), doi: 10.1103/PhysRevB.77.024103
  • [13] A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsässer, P. Gumbsch, Phys. Rev. B 77, 094131 (2008), doi: 10.1103/PhysRevB.77.094131
  • [14] C.H.M. Broeders, A.Yu. Konobeyev, J. Nucl. Mater. 336, 201 (2005), doi: 10.1016/j.jnucmat.2004.09.015
  • [15] C.H.M. Broeders, A.Yu. Konobeyev, J. Nucl. Mater. 342, 68 (2005), doi: 10.1016/j.jnucmat.2005.03.012
  • [16] A. Djaafri, T. Djaafri, A. Elias, M. Driss Khodja, Afric. Rev. Phys. 8, 365 (2013)
  • [17] A. Souidi, A. Elias, A. Djaafri, C.S. Becquart, M. Hou, Nucl. Instrum. Methods Phys. Res. B 193, 341 (2002), doi: 10.1051/jphys:019770038080100700
  • [18] A. Souidi, M. Hou, C.S. Becquart, C. Domain, J. Nucl. Mater. 295, 179 (2001), doi: 10.1016/S0022-3115(01)00556-6
  • [19] M.J. Caturla, T.D. de la Rubia, M. Victoria, R.K. Corzine, M.R. James, G.A. Greene, J. Nucl. Mater. 296, 90 (2001), doi: 10.1016/S0022-3115(01)00569-4
  • [20] E. Alonso, M.J. Caturla, T.D. de la Rubia, J.M. Perlado, J. Nucl. Mater. 276, 221 (2000), doi: 10.1016/S0022-3115(99)00181-6
  • [21] W. Takeuchi, Y. Yamamura, Radiat. Eff. 71, 53 (1983), doi: 10.1080/00337578308218603
  • [22] A. Kuzmichev, V. Perevertaylo, L. Tsybulsky, O. Volpian, J. Phys. Conf. Ser. 729, 012005 (2016), doi: 10.1088/1742-6596/729/1/012005
  • [23] T.T. Nuver, H. Rudolph, P.A. Zeijlmans van Emmichoven, A. Niehaus, Nucl. Instrum. Methods Phys. Res. B 164- 165, 785 (2000), doi: 10.1016/s0168-583X(99)01011-3
  • [24] A. De Backer, A. Sand, C. Ortiz, C. Domain, P. Olsson, E. Berthod, C.S. Becquart, Phys. Scr. T167, 014018 (2016), doi: 10.1088/0031-8949/T167/1/014018
  • [25] A. Elias, M. Driss Khodja, Phys. Proced. 2, 1489 (2009), doi: 10.1016/j.phpro.2009.11.121
  • [26] M. Hou, C.J. Ortiz, C.S. Becquart, C. Domain, U. Sarkar, A. Debacker, J. Nucl. Mater. 403, 89 (2010), doi: 10.1016/j.jnucmat.2010.06.004
  • [27] L. Bukonte, F. Djurabekova, J. Samela, K. Nordlund, S.A. Norris, M.J. Aziz, Nucl. Instrum. Methods Phys. Res. B 297, 23 (2013), doi: 10.1016/j.nimb.2012.12.014
  • [28] C.P. Race, The Modeling of Radiation Damage in Metals using Ehrenfest Dynamics, Springer Theses, Springer-Verlag, Berlin 2010, doi: 10.1007/978-3-642-15439-3
  • [29] M.T. Robinson, Phys. Rev. B 40, 10717 (1989), doi: 10.1103/PhysRevB.40.10717
  • [30] M.T. Robinson, Nucl. Instrum. Methods Phys. Res. B B 48, 408 (1990), doi: 10.1016/0168-583X(90)90150-S
  • [31] M.T. Robinson, Nucl. Instrum. Methods Phys. Res. B 67, 396 (1992), doi: 10.1016/0168-583X(92)95839-J
  • [32] M.T. Robinson, Radiat. Eff. 141, 1 (1997), doi: 10.1080/10420159708211552
  • [33] C.J. Ortiza, A. Souidi, C.S. Becquart, C. Domain, M. Hou, Radiat. Eff. 169, 592 (2014), doi: 10.1080/10420150.2014.920018
  • [34] M.T. Robinson, MARLOWE: Computer Simulation of Atomic Collisions in Crystalline Solids (Version 15b), RSICC Code Package PSR-137, 2002 http://oecd-nea.org/tools/abstract/detail/psr-0137
  • [35] O.S. Oen, M.T. Robinson, Nucl. Instrum. Methods 132, 647 (1976), doi: 10.1016/0029-554X(76)90806-5
  • [36] J. Lindhard, M. Scharff, H.E. Schiott, K. Danske Vidensk. Selsk., Math.-fys. Medd. 33, 1 (1963)
  • [37] M. Blackman, Handbuch der Physik, Vol. VII, Part 1, Springer-Verlag, Berlin 1955
  • [38] A. Dewaele, P. Loubeyre, M. Mezouar, Phys. Rev. B 70, 094112 (2004), doi: 10.1103/PhysRevB.70.094112
  • [39] F.R. De Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam 1989, doi: 10.1604/9780444870988
  • [40] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004
  • [41] W. Eckstein, Computer Simulation of Ion-Solid Interaction, in: Springer Series in Materials Science, Springer-Verlag, Berlin 1991, doi: 10.1007/978-3-642-73513-4
  • [42] M.T. Robinson, in: Fundamental Processes in Sputtering of Atoms and Molecules, SPUT92, Ed. P. Sigmund, Roy. Dan. Acad., Copenhagen 1992, p. 37
  • [43] S.T. Nakagawa, Y. Yamamura, Radiat. Eff. 105, 239 (1988), doi: 10.1080/00337578808229950
  • [44] S.T. Nakagawa, Radiat. Eff. 116, 21 (1991), doi: 10.1080/10420159108221341
  • [45] G. Vizkelently, S.M. Foiles, Nucl. Instrum. Methods Phys. Res. B 371, 111 (2015), doi: 10.1016/j.nimb.2015.08.088
  • [46] J.A. Brinkman, Am. J. Phys. 24, 246 (1956), doi: 10.1119/1.1934201
  • [47] M. Hou, Phys. Rev. A 39, 2817 (1989), doi: 10.1103/PhysRevA.39.2817
  • [48] G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for Physicists, Ed. Deutsches Elektronen-Synchrotron, 2010, doi: 10.3204/DESY-BOOK/statistics
  • [49] M. Hou, A. Souidi, C.S. Becquart, J. Phys. Condens. Matter 13, 5365 (2001), doi: 10.1088/0953-8984/13/22/326
  • [50] G.S. Was, in: Fundamentals of Radiation Materials Science: Metal and Alloys, Springer-Verlag, Berlin 2007, p. z298, doi: 10.1007/978-3-540-49472-0
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p09kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.