Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 32-38

Article title

A Hybrid Density Functional Study on PuN

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The structural, magnetic, electronic, dynamical and thermodynamic properties of PuN have been studied within the frameworks of the density-functional theory, DFT+U and hybrid DFT. The calculations have been performed using the full-potential-linearized augmented plane-wave method. The ferromagnetic and antiferromagnetic configurations are considered in this work. The lattice constants, bulk moduli, densities of states, and thermodynamic data have been computed and compared to available experimental data and other theoretical calculations published in the literature. Total energy results obtained with DFT+U and hybrid DFT indicate that the ground state of PuN is antiferromagnetic, in agreement with experiment. The chemical bonds between Pu and N have a mixture of covalent and ionic components, but the ionic character is stronger than covalent character. The phonon dispersion curves and the optical-mode frequencies are also reported. At last, the effect of spin-orbit coupling on the structural, magnetic, and electronic properties of PuN has been discussed.

Year

Volume

133

Issue

1

Pages

32-38

Physical description

Dates

published
2018-01
received
2017-05-21
(unknown)
2017-11-02

Contributors

author
  • College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
author
  • School of Business Administration, Chongqing City Management College, Chongqing 401331, PR China
author
  • Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, PR China

References

  • [1] The Chemistry of the Actinide and Transactinide Elements, Vols. 1-5, Eds. L.R. Morss, N.M. Edelstein, J. Fuger, J.J. Katz, Springer, New York 2006
  • [2] Actinides-Basic Science, Applications, and Technology, Eds. L. Soderholm, J.J. Joyce, M.F. Nicol, D.K. Shuh, J.G. Tobin, MRS Symposia Proceedings No. 802, Materials Research Society, Pittsburgh 2004
  • [3] Actinides 2005: Basic Science, Applications, and Technology, Eds. J.L. Sarrao, A.J. Schwartz, M.R. Antonio, P.C. Burns, R.G. Haire, H. Nitsche, MRS Symposia Proceedings No. 893, Materials Research Society, Pittsburgh 2005
  • [4] F. Brown, H.M. Ockenden, G.A. Welch, J. Chem. Soc. 4196 (1955), doi: 10.1039/JR9550004196
  • [5] W.M. Pardue, V.W. Storhok, R.A. Smith, P.H. Bonnell, J.F. Gates, D.L. Keller, Synthesis, Fabrication and Chemical Reactivity of Plutonium Mononitride, Battelle Memorial Institute, Columbus, Ohio, BMI-1693, 1964
  • [6] V.J. Tennery, E.S. Bomar, J. Am. Ceram. Soc. 54, 247 (1971), doi: 10.1111/j.1151-2916.1971.tb12281.x
  • [7] F.L. Oetting, The Chemical Thermodynamic Properties of Plutonium Compounds, The Dow Company, Rochy Flats Division, Golden, Colorado 1996
  • [8] R.O.A. Hall, J.A. Lee, D.J. Martin, M.J. Mortimer, P.W. Sutcliffe, J. Chem . Thermodyn. 10, 935 (1978), doi: 10.1016/0021-9614(78)90054-x
  • [9] L. Havela, F. Wastin, J. Rebizant, T. Gouder, Phys. Rev. B. 68, 085101 (2003), doi: 10.1103/PhysRevB.68.085101
  • [10] R.A. Fynn, A.K. Ray, Phys. Rev. B 76, 115101 (2007), doi: 10.1103/PhysRevB.76.115101
  • [11] L. Petit, A. Svane, W.M. Temmerman, Z. Szotek, Phys. Rev. B 80, 045124 (2009), doi: 10.1103/PhysRevB.80.045124
  • [12] X.D. Wen, R.L. Martin, G.E. Scueria, S.P. Rudin, E.R. Batista, J. Phys. Chem. C 117, 13122 (2013), doi: 10.1021/jp403141t
  • [13] H. Wang, K. Konashi, J. Alloys Comp. 533, 53 (2012), doi: 10.1016/j.jallcom.2012.03.117
  • [14] H. Nakamura, M. Machida, M. Kato, Phys. Rev. B 82, 155131 (2010), doi: 10.1103/PhysRevB.82.155131
  • [15] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002); P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Technische Universität Wien, Austria 2001, doi: 10.1016/S0010-4655(02)00206-0
  • [16] P. Blaha, K. Schwarz, P.I. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990), doi: 10.1016/0010-4655(90)90187-6
  • [17] M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Comput. Phys. Commun. 126, 294 (2000), doi: 10.1016/S0010-4655(99)00495-6
  • [18] P. Novák, J. Kuneš, L. Chaput, W.E. Pickett, Phys. Status Solidi B 243, 463 (2006), doi: 10.1002/pssb.200690004
  • [19] F. Tran, P. Blaha, K. Schwarz, P. Novák, Phys. Rev. B 74, 155108 (2006), doi: 10.1103/PhysRevB.74.155108
  • [20] M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999), doi: 10.1063/1.478401
  • [21] C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999), doi: 10.1063/1.478522
  • [22] I. de P.R. Moreira, F. Illas, R.L. Martin, Phys. Rev. B 65, 155102 (2002), doi: 10.1103/PhysRevB.65.155102
  • [23] J. Kuneš, P. Novak, M. Diviš, P.M. Oppeneer, Phys. Rev. B 63, 205111 (2001), doi: 10.1103/PhysRevB.63.205111
  • [24] F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944), doi: 10.1073/pnas.30.9.244
  • [25] R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York 1990
  • [26] A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008), doi: 10.1103/PhysRevB.78.134106
  • [27] A. Siegel, K. Parlinski, U.D. Wdowik, Phys. Rev. B 74, 104116 (2006), doi: 10.1103/PhysRevB.74.104116
  • [28] C. Lee, X. Gonze, Phys. Rev. B 51, 8610 (1995), doi: 10.1103/PhysRevB.51.8610
  • [29] A.T. Petit, P.L. Dulong, HUKHUKAnn. Chim. Phys. 10, 395 (1819), (in French)
  • [30] L. Sukit, J. Sirichok, Phys. Rev. B 70, 054104 (2004), doi: 10.1103/PhysRevB.70.054104

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app133z1p08kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.