PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 23-27
Article title

Mechanical Behavior of Aluminum Phosphide under Pressure

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
With the help of structural parameters and elastic constants obtained previously in our work (S. Daoud, N. Boiud, N. Lebga, J. Optoelectron. Adv. Mater. 16, 207 (2014)), different empirical formulae were successfully used to investigate: equation of state, the isotropic shear modulus, the Young modulus, the Cauchy ratio, the Born ratio, the Poisson ratio, the Pugh ratio, the Kleinman parameter, and the converse piezoelectric coefficient of the aggregate AlP material with cubic zinc-blende structure under pressure up to experimental pressure of phase transition (9.5 GPa). In addition, the Debye temperature at equilibrium volume was predicted, the result obtained is in excellent agreement compared to the experimental ones, the deviation is less than 1.4%.
Year
Volume
133
Issue
1
Pages
23-27
Physical description
Dates
published
2018-01
received
2017-10-07
(unknown)
2017-11-09
Contributors
author
  • Laboratoire Matériaux et Systèmes Electroniques (LMSE), Université Mohamed Elbachir El Ibrahimi de Bordj Bou Arreridj, Bordj Bou Arreridj, 34000, Algeria
References
  • [1] D.S. Yadav, C. Kumar, J. Singh, Parashuram, G. Kumar, J. Eng. Comput. Innov. 3, 26 (2012), doi: 10.5897/JECI12.005
  • [2] S. Labidi, H. Meradji, S. Ghemid, S. Meçabih, B. Abbar, J. Optoelectron. Adv. Mater. 11, 994 (2009)
  • [3] S. Aouadi, P. Rodriguez-Hernandez, K. Kassali, A. Muńoz, Phys. Lett. A 372, 5340 (2008), doi: 10.1016/j.physleta.2008.06.010
  • [4] H.R. Jappor, M.A. Abdulsattar, A.M. Abdullettif, Open Condens. Matter Phys. J. 3, 1 (2010)
  • [5] A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, A.H. Reshak, Y. Al-Douri, Comput. Mater. Sci. 45, 474 (2009), doi: 10.1016/j.commatsci.2008.11.013
  • [6] R.G. Greene, H. Luo, A.L. Ruoff, J. Appl. Phys. 76, 7296 (1994), doi: 10.1063/1.358015
  • [7] M. Ameri, A. Bentouaf, M. Doui-Aici, R. Khenata, F. Boufadi, A. Touia, Mater. Sci. Appl. 2, 729 (2011), doi: 10.4236/msa.2011.27101
  • [8] S. Daoud, N. Bioud, N. Bouarissa, Mater. Sci. Semicond. Proc. 31, 124 (2015), doi: 10.1016/j.mssp.2014.11.024
  • [9] A. Mujica, P. Rodríguez-Hernández, S. Radescu, R.J. Needs, A. Muńoz, Phys. Status Solidi B 211, 39 (1999), doi: 10.1002/(SICI)1521-3951(199901)211:1<345::AID-PSSB345>3.0.CO;2-W
  • [10] S. Daoud, Comput. Mater. Sci. 111, 532 (2016), doi: 10.1016/j.commatsci.2015.09.022
  • [11] S. Daoud, N. Bioud, N. Lebga, J. Optoelectron. Adv. Mater. 16, 207 (2014)
  • [12] H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, A. Tadjer, Phys. Status Solidi B 241, 2881 (2004), doi: 10.1002/pssb.200302064
  • [13] D. Varshney, G. Joshi, M. Varshney, S. Shriya, Solid State Sci. 12, 864 (2010), doi: 10.1016/j.solidstatesciences.2010.02.003
  • [14] S. Daoud, A. Latreche, A. Bencheikh, Cryst. Res. Technol. 51, 115 (2016), doi: 10.1002/crat.201500132
  • [15] M. Talati, P.K. Jha, Int. J. Mod. Phys. B 24, 1235 (2010), doi: 10.1142/S0217979210055184
  • [16] P. Bhardwaj, M. Sarwan, R. Dubey, S. Singh, J. Mol. Struct. 1043, 85 (2013), doi: 10.1016/j.molstruc.2013.03.030
  • [17] P. Vinet, J. Ferrante, J.R. Smith, J.H. Rose, Phys. Rev. B 35, 1945 (1987), doi: 10.1103/PhysRevB.35.1945
  • [18] P. Vinet, J. Ferrante, J.R. Smith, J.H. Rose, `Universality in the Compressive Behavior of Solids, NASA Technical Memorandum 87303, N 86-26775, 1986
  • [19] D. Varshney, S. Shriya, M. Varshney, R. Khenata, Comput. Mater. Sci. 61, 158 (2012), doi: 10.1016/j.commatsci.2012.04.009
  • [20] S.F. Pugh, Philos. Mag. 45, 823 (1954), doi: 10.1080/14786440808520496
  • [21] D. Varshney, G. Joshi, N. Kaurav, R.K. Singh, J. Phys. Chem. Solids 70, 451 (2009), doi: 10.1016/j.jpcs.2008.11.021
  • [22] S. Stølen, R.G. Trønnes, Phys. Earth. Planet. In. 164, 50 (2007), doi: 10.1016/j.pepi.2007.05.009
  • [23] S.Q. Wang, H.Q. Ye, Phys. Status Solidi B 240, 45 (2003), doi: 10.1002/pssb.200301861
  • [24] S. Adachi, Physical Properties of III-V Semiconductor Compounds, Wiley, New York 1992, p. 25
  • [25] Processing and properties of compound semiconductors, in series Semiconductors and Semimetals, Vol. 73, Eds. R. Willardson, H.S. Nalwa, Academic Press, San Diego 2001, p. 27
  • [26] S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, Wiley, England 2005
  • [27] S. Adachi, Properties of Aluminium Gallium Arsenide, The Institution of Electrical Engineers, London 1993, p. 25
  • [28] V.P. Mikhal'chenko, Phys. Solid State 45, 453 (2003), doi: 10.1134/1.1562230
  • [29] K. Kim, W.R.L. Lambrecht, B. Segal, Phys. Rev. B 50, 1502 (1994), doi: 10.1103/PhysRevB.50.1502
  • [30] J. Yang, Special Topics in the Theory of Piezoelectricity, Springer, Science+Business Media, LLC, 2009
  • [31] S. Daoud, N. Bioud, N. Lebga, Pramana J. Phys. 81, 885 (2013), doi: 10.1007/s12043-013-0596-2
  • [32] B. Lüthi, Physical Acoustics in the Solid State, Springer-Verlag, Berlin 2005
  • [33] M. Blackman, Philos. Mag. 42, 1441 (1951), doi: 10.1080/14786445108560963
  • [34] V. Kumar, V. Jha, A.K. Shrivastava, Cryst. Res. Technol. 45, 920 (2010), doi: 10.1002/crat.201000268
  • [35] Handbook of Chemistry and Physics, Ed. D.R. Lide, 80th ed., CRC Publication, 1999-2000
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app133z1p06kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.