PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1192-1199
Article title

Experimental and Quantum Chemical Calculations of 2-Amino-4,5,6,7-Tetrahydrobenzo[b]Thiophene-3-Carbonitrile

Content
Title variants
Languages of publication
EN
Abstracts
EN
Vibrational frequencies of 2-Amino-4,5,6,7-Tetrahydrobenzo[b]Thiophene-3-Carbonitrile were calculated using density functional (DFT/B3YLP) method with 6-311++G(d,p) basis set by Gaussian 09. The assignments of the vibrational frequencies have been done by potential energy distribution analysis, using VEDA 4 software. The density functional theory and time dependent density functional theory methods have been used to study the electronic properties of 2-Amino-4,5,6,7-Tetrahydrobenzo[b]Thiophene-3-Carbonitrile. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital method. All computed spectroscopic properties were compared with experimental ones. The simulated spectra of the molecule show excellent agreement with the experimental spectra.
Keywords
Contributors
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
  • Süleyman Demirel University, Experimental and Observational Research and Application Centre, Isparta, Turkey
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
author
  • Department of Physics, Faculty of Art and Sciences, Bozok University, Yozgat 66100, Turkey
References
  • [1] W.L. Silva, M.C. Lima, S.L. Galdino, I.R. Pitta, C.A. Simone, Acta Cryst. E67, o3161 (2011)
  • [2] J.D. Magdaline, T. Chithambarathanu, J. Appl. Chem. 8, 6 (2015)
  • [3] J.L. Reddinger, J.R. Reynolds, Adv. Polym. Sci. 145, 57122 (1999)
  • [4] D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537 (2000), doi: 10.1021/cr9801014
  • [5] I.C. Choong, W. Lew, D. Lee, P. Pham, M.T. Burdett, J.W. Laam, C. Wiesmann, T.N. Luong, B. Fahr, W.L. DeLano, R.S. McDowell, D.A. Allen, D. Erlanson, E.M. Gordon, T. O'Brien, J. Med. Chem. 45, 5005 (2002), doi: 10.1021/jm020230j
  • [6] K. Dore, S. Dubus, H.A. Ho, I. Levesque, M. Brunette, G. Corbeil, M. Boissinot, G. Boivin, M.G. Bergeron, D. Boudreau, M. Leclerc, J. Am. Chem. Soc. 126, 4240 (2004), doi: 10.1021/ja038900d
  • [7] D.K. James, J.M. Tour, Topics Curr. Chem. 257, 33 (2005), doi: 10.1007/b136066
  • [8] P. Si, Q. Chi, Z. Li, J. Ulstrup, P.J. Moller, J. Mortensen, J. Am. Chem. Soc. 129, 3888 (2007), doi: 10.1021/ja067193w
  • [9] Merck Index, 13th ed., Merck & Co, Whitehouse Station, New Jersery 2001
  • [10] J. Bakker, F.J. Gommers, I. Nieuwenhius, H. Wynberg, J. Biol. Chem. 254, 1841 (1979)
  • [11] S. Iyengar, J.T. Arnason, B.J.R. Philogene, P. Morand, N.H. Werstiuk, G. Timmins, Pesticide Biochem. Physiol. 29, 1 (1987)
  • [12] H. Matsuura, G. Saxena, S.W. Farmer, R.E.W. Hancock, G.H. Towers, Planta Med. 62, 256 (1996), doi: 10.1055/s-2006-957872
  • [13] G.F.Q. Chan, G.H.N. Towers, J.C. Mitchell, Phytochem. 14, 2295 (1975), doi: 10.1016/S0031-9422(00)91121-X
  • [14] J.B. Hudson, E.A. Graham, N. Miki, G.H.N. Towers, L.L. Hudson, R. Rossi, A. Carpita, D. Neri, Chemosphere 19, 1329 (1989), doi: 10.1016/0045-6535(89)90080-5
  • [15] J. Malmstrom, M. Jonsson, I.A. Cotgreave, L. Hammarstrom, M. Sjodin, L. Engmann, J. Am. Chem. Soc. 123, 3434 (2001), doi: 10.1021/ja0035811
  • [16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, revision A.1. Gaussian, Inc., Wallingford CT 2009
  • [17] N. Sundaraganesan, S. Ilakiamania, H. Saleema, P.M. Wojciechowski, D. Michalska, Spectrochim. Acta Part A 61, 2995 (2005), doi: 10.1016/j.saa.2004.11.016
  • [18] R. Dennington, T. Keith, J. Millam, Gaussviev Ver. 5. s.l.: Semichem Inc. Shawnee Mission, KS 2009
  • [19] M.H. Jamróz, Vibrational Energy Distribution Analysis, VEDA 4 Computer Program, Warsaw 2004
  • [20] C.I. Sainz-Diaz, M. Francisco-Marquez, A. Vivier-Bunge, Theor. Chem. Acc. 125, 83 (2010), doi: 10.1007/s00214-009-0666-1
  • [21] T.D. Klots, R.D. Chirico, W.V. Steele, Spectrochim. Acta Part A 50, 765 (1994), doi: 10.1016/0584-8539(94)80014-6
  • [22] M. Karabacak, M. Çınar, M. Kurt, J. Mol. Struct. 968, 108 (2010), doi: 10.1016/j.molstruc.2010.01.033
  • [23] Y. Wang, S. Saebo, C.V. Pittman, J. Mol. Struct. (THEOCHEM) 281, 91 (1993), doi: 10.1016/0166-1280(93)87064-K
  • [24] S. Sudha, N. Sundaraganesan, M. Kurt, M. Cinar, M. Karabacak, J. Mol. Struct. 985, 148 (2011), doi: 10.1016/j.molstruc.2010.10.035
  • [25] N. Puviarasan, V. Arjunan, S. Mohan, Turkey J. Chem. 26, 323 (2002)
  • [26] M. Karabacak, M. Kurt, A. Ataç, J. Phys. Organic Chem. 22, 321 (2009), doi: 10.1002/poc.1480
  • [27] A. Usha Rani, N. Sundaraganesan, M. Kurt, M. Cinar, M. Karabacak, Spectrochim. Acta Part A 75, 1523 (2010), doi: 10.1016/j.saa.2010.02.010
  • [28] H.F. Hameka, J.O. Jensen, J. Mol. Struct. (THEOCHEM) 362, 325 (1996), doi: 10.1016/0166-1280(95)04407-8
  • [29] J.R. During, M.M. Bergana, H.V. Phan, J. Raman Spectroscopy 22, 141 (1991)
  • [30] G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, New York 1969
  • [31] Z. Niu, K.M. Dunn, J.E. Boggs, J. Mol. Phys. 55, 421 (1985)
  • [32] J.B. Labbert, H.F. Shurvel, L. Verbit, R.G. Cooks, G.H. Stout, Organic Structural Analysis, Macmillan Publ. Co. Inc., New York 1976
  • [33] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York 1994
  • [34] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston 1990
  • [35] R.K. Alan, G.A. Novruz, D. Jacek, P.M. Prabhu, C.H. Dennis, G. Alâattin, Magnetic Resonance Chem. 45, 532 (2007), doi: 10.1002/mrc.1967
  • [36] D. Shoba, S. Periandi, S. Boomadevi, S. Ramalingam, E. Fereyduni, Spectrochim. Acta Part A 118, 438 (2014), doi: 10.1016/j.saa.2013.09.023
  • [37] M. Karabacak, Z. Cinar, M. Kurt, S. Sudha, N. Sundaraganesan, Spectrochimica Acta Part A 85, 179 (2012), doi: 10.1016/j.saa.2011.09.058
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app132z3-iip099kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.