Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1118-1121

Article title

The Role of Hydrostatic Pressure in Electrical Properties of Au/n-GaAs Schottky diodes with Substituted Polyaniline Interfacial Layer

Content

Title variants

Languages of publication

EN

Abstracts

EN
Au/polymer P2ClAn(H₃BO₃)/n-GaAs Schottky barrier diodes, where P2ClAn stands for poly(2-chloroaniline), have been fabricated. To fabricate Schottky diodes with polymer interface, n-type GaAs wafer was used. The P2ClAn polymer solution was applied on the front face of the n-GaAs wafer by a pipette. The P2ClAn emeraldine salt was chemically synthesized by using boric acid (H₃BO₃). Schottky diode parameters, such as ideality factor, barrier height and series resistance have been measured, as functions of hydrostatic pressure, using the current-voltage technique. The ideality factor values of Au/P2ClAn/n-GaAs Schottky barrier diodes have decreased from 3.38 to 3.01, the barrier height has increased from 0.653 to 0.731 eV at 0.36 kbar and series resistances were ranging from 14.95 to 14.69. The results obtained from I-V characteristics of Au/P2ClAn/n-GaAs Schottky barrier diodes show that pressure treatment improves the rectifying properties of the diodes. These diodes can be used as pressure-sensitive capacitors, due to pressure-dependence of diode parameters.

Keywords

EN

Contributors

author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
  • Atatürk University, Physics Department, Erzurum, Turkey
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey
author
  • Süleyman Demirel University, Physics Department, Isparta, Turkey

References

  • [1] S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York 1981
  • [2] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., Oxford University Press, Oxford 1988
  • [3] J.H. Warner, U. Rau, in: Springer Series in Electronics and Photonics, J.F. Luy, P. Russer (Eds.), vol. 32, 1994
  • [4] M. Ahmetoğlu, A. Kara, B. Kucur, Acta Phys. Pol. A 130, 206 (2016), doi: 10.12693/APhysPolA.130.206
  • [5] Ç.Ş. Güçlü, A.F. Özdemir, A. Kökçe, Ş. Altindal, Acta Phys. Pol. A 130, 325 (2016), doi: 10.12693/APhysPolA.130.325
  • [6] S. Kaci, A. Kwffous, I. Bozetine, M. Trari, O. Fellahin, Acta Phys. Pol. A 130, 463 (2016), doi: 10.12693/APhysPolA.130.463
  • [7] A. Umapathi, V. Rajagopal Reddy, Microelectron. Eng. 114, 31 (2014), doi: 10.1016/j.mee.2013.09.006
  • [8] M. Siada, A. Keffousb, S. Mammaa, Y. Belkacemb, H. Menari, Appl. Surf. Sci. 236, 366 (2004), doi: 10.1016/j.apsusc.2004.05.009
  • [9] H. Serrar, R. Labbani, C. Benazzouz, Acta Phys. Pol. A 130, 51 (2016), doi: 10.12693/APhysPolA.130.51
  • [10] S. Salleh, H.F. Abdul Amir, A. Kumar Tiwari, F. Pien Chee, Acta Phys. Pol. A 130, 93 (2016), doi: 10.12693/APhysPolA.130.93
  • [11] I.A. Cola, M.G. Lupo, L. Vasanelli, A. Valentini, Solid-State Electron. 36, 785 (1993), doi: 10.1016/0038-1101(93)90250-T
  • [12] S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986), doi: 10.1063/1.97359
  • [13] H. Norde, J. Appl. Phys. 50, 5052 (1979), doi: 10.1063/1.325607
  • [14] E. Ayyildiz, C. Temirci, B. Bati, A. Turut, Int. J. Electron. 88, 625 (2001), doi: 10.1080/00207210110044396
  • [15] S. Kumar, Y.S. Katharria, S. Kumar, D. Kanjilal, Solid-State Electron. 50, 1835 (2006), doi: 10.1016/j.sse.2006.09.004
  • [16] N. Ucar, A.F. Ozdemir, D.A. Aldemir, S. Cakmak, A. Calik, H. Yildiz, F. Cimilli, Superlattices Microstruct. 47, 586 (2010), doi: 10.1016/j.spmi.2010.02.003
  • [17] N. Ucar, A. Faruk Ozdemir, D.A. Aldemir, G. Cankaya, Z. Naturforsch. 66, 576 (2011), doi: 10.5560/ZNA.2011-0005
  • [18] A. Turut, F. Koleli, J. Appl Phys. 72, 818 (1992), doi: 10.1063/1.351822
  • [19] S. Aydogan, M. Saglam, A. Turut, J. Polym. Sci.: Part B 44, 1572 (2006), doi: 10.1002/polb.20812
  • [20] N. Ucar, A.F. Ozdemir, A. Calik, A. Kokce, Superlattices Microstruct. 49, 124 (2011), doi: 10.1016/j.spmi.2010.11.005
  • [21] A. Gök, B. Sarı, J. Appl. Polym. Sci. 84, 1993 (2002), doi: 10.1002/app.10487
  • [22] R.H. Williams, G.Y. Robinson, Physics and chemistry of III-V compound semiconductor interfaces, in: C.W. Wilmsen (Ed.), Plenum Press, New York 1985
  • [23] E.H. Rhoderick, R.H. Willams, Metal-Semiconductor Contacts, Clarendon Press, Oxford 1998
  • [24] A. Ziel, Solid State Physical Electronics, 2nd ed., Prentice-Hall, Englewood Cliffs 1968
  • [25] A.F. Özdemir, D.A. Aldemir, A. Kokce, S. Altindal, Synthetic Metals 159, 1427 (2009), doi: 10.1016/j.synthmet.2009.03.020
  • [26] G. Cankaya, N. Ucar, E. Ayyildiz, H. Efeoglu, A. Turut, S. Tuzemen, Y.K. Yogurtcu, Phys. Rev. B 60, 15944 (1999), doi: 10.1103/PhysRevB.60.15944
  • [27] G. Cankaya, B. Abay, Semicond. Sci. Technol. 21, 124 (2006), doi: 10.1088/0268-1242/21/2/004
  • [28] M. Cakar, C. Temirci, A. Turut, G. Cankaya, Phys. Scr. 68, 70 (2003), doi: 10.1238/Physica.Regular.068a00070

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app132z3-iip080kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.