Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1112-1117

Article title

Gibbs Sampling in Inference of Copula Gaussian Graphical Model Adapted to Biological Networks

Content

Title variants

Languages of publication

EN

Abstracts

EN
Markov chain Monte Carlo methods (MCMC) are iterative algorithms that are used in many Bayesian simulation studies, where the inference cannot be easily obtained directly through the defined model. Reversible jump MCMC methods belong to a special type of MCMC methods, in which the dimension of parameters can change in each iteration. In this study, we suggest Gibbs sampling in place of RJMCMC, to decrease the computational demand of the calculation of high dimensional systems. We evaluate the performance of the suggested algorithm in three real benchmark datasets, by comparing the accuracy and the computational demand with its strong alternatives, namely, birth-death MCMC, RJMCMC and QUIC algorithms. From the comparative analyses, we detect that Gibbs sampling improves the computational cost of RJMCMC without losing the accuracy.

Keywords

EN

Year

Volume

132

Issue

3

Pages

1112-1117

Physical description

Dates

published
2017-09

Contributors

  • Middle East Technical University, Department of Statistics, Ankara, Turkey
author
  • Middle East Technical University, Department of Statistics, Ankara, Turkey

References

  • [1] Mazet and Brie, An alternative to the RJMCMC algorithm, Proceeding of IAR Annual Meeting, Nancy, 2006
  • [2] P.J. Green, Biometrika 82, 711 (1995), doi: 10.1093/biomet/82.4.711
  • [3] A. Dobra, A. Lenkoski, Ann. Appl. Statistics 5, 969 (2011), doi: 10.1214/10-AOAS397
  • [4] A. Mohammadi, E. Wit, Int. Soc. Bayesian Anal. 10, 109 (2015)
  • [5] S. Richardson, P.J. Green, J. Royal Stat. Soc. B 59, 731 (1997), doi: 10.1111/1467-9868.00095
  • [6] Carlin, Chibs, J. Roy. Stat. Soc. B, 57, 473 (1995)
  • [7] S. Walker, Electronic Journal of Statistics, arXiv: 0902.4117, 2009 http://arXiv.org/abs/0902.4117,
  • [8] K. Ergen, A. Çıllı, N. Yahnıoğlu, Acta. Phys. Pol. A 128, B-273 (2015), doi: 10.12693/APhysPolA.128.B-273
  • [9] M. Cevri, D. Üstündağ, Acta. Phys. Pol. A 130, 45 (2016), doi: 10.12693/APhysPolA.130.45
  • [10] N. İyit, H. Yonar, A. Genç, Acta. Phys. Pol. A 130, 397 (2016), doi: 10.12693/APhysPolA.130.397
  • [11] B. Muthen, Psychometrika 49, 115 (1984), doi: 10.1007/BF02294210
  • [12] C.J. Hsieh, M.A. Sustik, I.S. Dhillon, P. Ravikumar, J. Machine Learning Res. 15, 2911 (2014)
  • [13] J. Whittaker, Graphical Models in Applied Multivariate Statistics, John Wiley and Sons, 1990
  • [14] K. Sachs, O. Perez, D. Pe'er, D.A. Lauenburger, G.P. Nolan, Science 308, 523 (2005), doi: 10.1126/science.1105809
  • [15] V. Purutçuoğlu, E. Wit, Mathemat. Problems Engin. 2012, ID: 752631 (2012), doi: 10.1155/2012/752631
  • [16] D. Gillespie, J. Phys. Chem. 81, 2340 (1977), doi: 10.1021/j100540a008
  • [17] E.C. Brechmann, U. Schepsmeier, J. Statistical Software 52, 1 (2013), doi: 10.18637/jss.v052.i03
  • [18] F. Abegaz, E. Wit, Biostatistics 14, 586 (2013), doi: 10.1093/biostatistics/kxt005
  • [19] E. Boutalbi, L. Ait Gougam, F. Mekideche-Chafa, Acta. Phys. Pol. A 128, B-271 (2015), doi: 10.12693/APhysPolA.128.B-271
  • [20] T. Aydogan, I. Ozcelik, I. Erturk, H. Ekiz, Acta. Phys. Pol. A 130, 412 (2016), doi: 10.12693/APhysPolA.130.412

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app132z3-iip079kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.