Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1102-1105
Article title

Effect of Phase Change Materials on Time Lag, Decrement Factor and Heat-Saving

Title variants
Languages of publication
In this study, the effect of phase change materials on the time lag, decrement factor and heat-saving is examined numerically. The calculations are conducted for four different cities located at different climatic zones in Turkey, considering both summer and winter conditions, in order to explore the potential heating and cooling energy savings by employing phase change materials. A solar-air temperature, which is a function of time and solar radiation, was taken into consideration as external boundary condition for each city. The results of the present study show that employment of phase change materials in walls of the buildings has a pronounced effect on the time lag and decrement factor. It is concluded that a significant amount of heating energy can be saved and thermal comfort can be enhanced considerably by incorporating phase change materials into external walls. However, a proper phase change material must be selected, considering different climatic conditions.
  • Kocaeli University, Engineering Faculty, Mechanical Engineering Department, 41380 Kocaeli, Turkey
  • Kocaeli University, Engineering Faculty, Mechanical Engineering Department, 41380 Kocaeli, Turkey
  • [1] A.A. Jadallah, D.Y. Mahmood, Z.A. Abdulqaedr, Acta Phys. Pol. A 128, B-461 (2015), doi: 10.12693/APhysPolA.128.B-461
  • [2] A.A. Jadallah, D.Y. Mahmood, Z. Er, Z.A. Abdulqaedr, Acta Phys. Pol. A 130, 434 (2016), doi: 10.12693/APhysPolA.130.434
  • [3] Z. Er, Acta Phys. Pol. A 128, B-477 (2015), doi: 10.12693/APhysPolA.128.B-477
  • [4] Z. Er, Acta Phys. Pol. A 130, 72 (2016), doi: 10.12693/APhysPolA.130.72
  • [5] M. Arıcı, B. Yılmaz, H. Karabay, Acta Phys. Pol. A 130, 266 (2016), doi: 10.12693/APhysPolA.130.266
  • [6] M. Imal, Acta Phys. Pol. A 130, 245 (2016), doi: 10.12693/APhysPolA.130.245
  • [7] B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Appl. Thermal Engin. 23, 251 (2003), doi: 10.1016/S1359-4311(02)00192-8
  • [8] A.K. Athienitis, C. Liu, D. Hawes, Build. Environment 32, 405 (1997), doi: 10.1016/S0360-1323(97)00009-7
  • [9] M.J. Huang, P.C. Eames, N.J. Hewitt, Solar Ener. Mater. Solar Cells 90, 1951 (2006), doi: 10.1016/j.solmat.2006.02.002
  • [10] B.M. Diaconu, M. Cruceru, Ener. Build. 42, 1759 (2010), doi: 10.1016/j.enbuild.2010.05.012
  • [11] C.K. Halford, R.F. Boehm, Ener. Build. 39, 298 (2007), doi: 10.1016/j.enbuild.2006.07.005
  • [12] H. Asan, Build. Environment 41, 615 (2006), doi: 10.1016/j.buildenv.2005.02.020
  • [13] C. Sun, S. Shu, G. Ding, Ener. Build. 61, 1 (2013), doi: 10.1016/j.enbuild.2013.02.003
  • [14] C. Lai, S. Hokoi, Ener. Build. 73, 37 (2014), doi: 10.1016/j.enbuild.2014.01.017
  • [15] Y.A. Çengel, Heat and mass transfer, 3rd ed., McGraw-Hill, 2007, p. 849
  • [16] EEC, Safety Data Sheet Rubitherm, Rubitherm, Berlin 2010, available from:
  • [17] B. Zivkovic, I. Fujii, Solar Ener. 70, 51 (2001), doi: 10.1016/S0038-092X(00)00112-2
  • [18] R. Yumrutaş, M. Ünsal, M. Kanoğlu, Build. Environment 40, 1117 (2004), doi: 10.1016/j.buildenv.2004.09.005
  • [19] M.J. Al-Khawaja, Appl. Thermal Engin. 24, 2601 (2004), doi: 10.1016/j.applthermaleng.2004.03.019
  • [20] I.P. Frank, D.P. DeWitt, Fundamentals of heat and mass transfer, John Wiley & Sons, 4th ed., 2002, p. 683
  • [21] H. Bulut, O. Büyükalaca, A. Yılmaz, in: Energy and Environment Symposium (IEEES-1), Izmir, Turkey 2003, p. 499
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.