Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1091-1094
Article title

Phase Formation in Electrodeposited Cu-Zn Alloy Films Produced from Ultrasonicated Solutions

Title variants
Languages of publication
Thin film brass alloys were galvanostatically electrodeposited from non-cyanide citrate solutions. Aqueous sulphate solutions were used as deposition medium. It was aimed to understand the effect of ultrasonication of the solutions before electrodeposition process. Ultrasonication was not applied during deposition. This method was utilized to change solution characteristics, by applying high energy via cavitation mechanism, which would result in changes in resultant film properties. X-ray diffraction technique was used to investigate phase formation in samples. Moreover X-ray diffractograms were also used to calculate grain size values. Cu and Zn elements were codeposited successfully to form brass alloys. When phase formations in the samples were compared to each other, it was concluded that although there are small differences between X-ray diffractograms of samples, ultrasonic treatment before electrodeposition is not an effective way to alter phase characteristics of CuZn alloy samples, since all samples have shown similar X-ray diffraction graphs. Grain size is found to get smaller with presence of ultrasonication, extending ultrasonication time caused only small random changes in grain size.
Physical description
  • Mustafa Kemal University, Physics Department, Hatay, Turkey
  • Mustafa Kemal University, Physics Department, Hatay, Turkey
  • [1] F.A. Lowenheim, Modern Electroplating, Wiley, New York 1974
  • [2] A. Brenner, Electrodeposition of Alloys. Principles and Practice, Vol. 1, Academic Press, New York 1963
  • [3] H. Strow, Metal Finishing Guidebook 99, 206 (2001)
  • [4] I.A. Carlos, M.R.H. de Almeida, J. Electroanal. Chem. 562, 153 (2004), doi: 10.1016/j.jelechem.2003.08.028
  • [5] F.B.A. Ferreira, F.L.G. Silva, A.S. Luna, D.C.B. Lago, L.F. Senna, J. Appl. Electrochem. 37, 473 (2007), doi: 10.1007/s10800-006-9278-9
  • [6] R. Juskenas, V. Karpaviciene, V. Pakstas, A. Selskis, V. Kapocius, J. Electroanal. Chem. 602, 237 (2007), doi: 10.1016/j.jelechem.2007.01.004
  • [7] K.M. Ismail, R.M. Elsherif, W.A. Badawy, Electrochim. Acta 49, 5151 (2004), doi: 10.1016/j.electacta.2004.06.028
  • [8] M. Hemmous, A. Layadi, A. Guittoum, L. Kerkache, N. Tiercelin, A. Klimov, V. Preobrazhensky, P. Pernod, Europ. Phys. J. Appl. Phys. 70, 10301 (2015), doi: 10.1051/epjap/2015140297
  • [9] Kribalis, P.E. Tsakiridis, C. Dedeloudis, E.J. Hristoforou, J. Optoelectronics Adv. Mater. 8, 1475 (2006)
  • [10] A.S. Kadırbayeva, A.B. Bayeshov, Acta Phys. Pol. A 128, B-458 (2015), doi: 10.12693/APhysPolA.128.B-458
  • [11] W. Laslouni, Z. Hamlati, M. Azzaz, Acta Phys. Pol. A 128, B-190 (2015), doi: 10.12693/APhysPolA.128.B-190
  • [12] W. Laslouni, M. Azzaz, Acta Phys. Pol. A 130, 112 (2016), doi: 10.12693/APhysPolA.130.112
  • [13] S.U. Rehman, M. Khan, A. Nusair Khan, L. Ali, S.H. Imran Jaffery, Acta Phys. Pol. A 128, B-125 (2015), doi: 10.12693/APhysPolA.128.B-125
  • [14] X.B. Ren, K. Otsuka, MRS Bull. 27, 115 (2002)
  • [15] Yongqing Fu, Hejun Du, Weimin Huang, Sam Zhang, Min Hu, Sens. Actuators A: Phys. 112, 395 (2004), doi: 10.1016/j.sna.2004.02.019
  • [16] P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, J. MEMS 5, 270 (1996), doi: 10.1109/84.546407
  • [17] E. Makino, M. Uenoyama, T. Shibata, Sens. Actuator A: Phys. 71, 187 (1998), doi: 10.1016/S0924-4247(98)00180-0
  • [18] I.N. Qureshi, M. Shahid, A.N. Khan, Acta Phys. Pol. A 128, B-314 (2015), doi: 10.12693/APhysPolA.128.B-314
  • [19] N. Syla, F. Aliaj, B. Dalipi, Acta Phys. Pol. A 130, 83 (2016), doi: 10.12693/APhysPolA.130.83
  • [20] S. Kırtay, Acta Phys. Pol. A 128, B-90 (2015), doi: 10.12693/APhysPolA.128.B-90
  • [21] D. De Filippo, A. Rossi, D. Atzei, J. Appl. Electrochem. 22, 64 (1992), doi: 10.1007/BF01093013
  • [22] I.A. Carlos, M.R.H. de Almeida, J. Electroanal. Chem. 562, 153 (2004), doi: 10.1016/j.jelechem.2003.08.028
  • [23] P. Fricoteaux, C. Rousse, J. Electroanal. Chem. 733, 53 (2014), doi: 10.1016/j.jelechem.2014.09.006
  • [24] N. Haberkorn, M. Ahlers, F.C. Lovey, Scripta Mater. 61, 821 (2009), doi: 10.1016/j.scriptamat.2009.07.005
  • [25] I. Tudela, Y. Zhang, M. Pal, I. Kerr, T.J. Mason, A.J. Cobley, Surf. Coat. Technol. 264, 49 (2015), doi: 10.1016/j.surfcoat.2015.01.020
  • [26] M. Kim, F. Sun, J. Lee, Y.K. Hyun, D. Lee, Surf. Coat. Technol. 205, 2362 (2010), doi: 10.1016/j.surfcoat.2010.09.049
  • [27] Sangmin Shin, Chansu Park, Chiho Kim, Yangdo Kim, Sungkyun Park, Jae-Ho Lee, Curr. Appl. Phys. 16, 207 (2016), doi: 10.1016/j.cap.2015.11.017
  • [28] S.J. Kim, D.J. Duquette, J. Electrochem. Soc. 153, C417 (2006), doi: 10.1149/1.2189971
  • [29] B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd ed., Prentice Hall, 2001
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.