Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1062-1065

Article title

Solution of a Class of Optimization Problems Based on Hyperbolic Penalty Dynamic Framework

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study, a gradient-based dynamic system is constructed in order to solve a certain class of optimization problems. For this purpose, the hyperbolic penalty function is used. Firstly, the constrained optimization problem is replaced with an equivalent unconstrained optimization problem via the hyperbolic penalty function. Thereafter, the nonlinear dynamic model is defined by using the derivative of the unconstrained optimization problem with respect to decision variables. To solve the resulting differential system, a steepest descent search technique is used. Finally, some numerical examples are presented for illustrating the performance of the nonlinear hyperbolic penalty dynamic system.

Keywords

EN

Contributors

author
  • Balıkesir University, Department of Mathematics, Balıkesir, Turkey

References

  • [1] A.T. Özturan, Acta Phys. Pol. A 128, B-93 (2015), doi: 10.12693/APhysPolA.128.B-93
  • [2] A. Recioui, Acta Phys. Pol. A 128, B-7 (2015), doi: 10.12693/APhysPolA.128.B-7
  • [3] M.J. Pazdanowski, Acta Phys. Pol. A 128, B-213 (2015), doi: 10.12693/APhysPolA.128.B-213
  • [4] A.T. Özturan, Acta Phys. Pol. A 130, 14 (2016), doi: 10.12693/APhysPolA.130.14
  • [5] D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, 3rd ed., Springer, New York 2008
  • [6] K.J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford University Press, California 1958
  • [7] A.V. Fiacco, G.P. Mccormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York 1968
  • [8] H. Yamashita, Math. Program. 18, 155 (1976)
  • [9] C.A. Botsaris, J. Math. Anal. Appl. 63, 177 (1978), doi: 10.1016/0022-247X(78)90114-2
  • [10] A.A. Brown, M.C. Bartholomew-Biggs, J. Optim. Theory Appl. 62, 371 (1989), doi: 10.1007/BF00939812
  • [11] Y.G. Evtushenko, V.G. Zhadan, Opt. Meth. Software 3, 237 (1994), doi: 10.1080/10556789408805567
  • [12] J. Schropp, I. Singer, Numer. Funct. Anal. Optim. 21, 537 (2000), doi: 10.1080/01630560008816971
  • [13] L. Jin, Appl. Math. Comput. 206, 186 (2008)
  • [14] N. Özdemir, F. Evirgen, Bull. Malays. Math. Sci. Soc. 33, 79 (2010)
  • [15] F. Evirgen, N. Özdemir, J. Comput. Nonlinear Dyn. 6, 021003 (2011), doi: 10.1115/1.4002393
  • [16] F. Evirgen, N. Özdemir, A Fractional Order Dynamical Trajectory Approach for Optimization Problem with HPM, Eds. D. Baleanu, J.A.T. Machado, A.C.J. Luo, Springer, 2012, p. 145
  • [17] F. Evirgen, Int. J. Optim. Control: Th. Applicat. (IJOCTA) 6, 75 (2016)
  • [18] A.E. Xavier, M.Sc. Thesis, Federal University of Rio de Janerio/COPPE, Rio de Janerio 1982
  • [19] A.E. Xavier, Intl. Trans. in Op. Res. 8, 659 (2001), doi: 10.1111/1475-3995.t01-1-00330
  • [20] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes, Springer-Verlag, Berlin 1981
  • [21] K. Schittkowski, More Test Examples For Nonlinear Programming Codes, Springer, Berlin 1987

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app132z3-iip067kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.