Title variants
Languages of publication
Abstracts
In this study, a gradient-based dynamic system is constructed in order to solve a certain class of optimization problems. For this purpose, the hyperbolic penalty function is used. Firstly, the constrained optimization problem is replaced with an equivalent unconstrained optimization problem via the hyperbolic penalty function. Thereafter, the nonlinear dynamic model is defined by using the derivative of the unconstrained optimization problem with respect to decision variables. To solve the resulting differential system, a steepest descent search technique is used. Finally, some numerical examples are presented for illustrating the performance of the nonlinear hyperbolic penalty dynamic system.
Discipline
- 02.70.-c: Computational techniques; simulations(for quantum computation, see 03.67.Lx; for computational techniques extensively used in subdivisions of physics, see the appropriate section; for example, see 47.11.-j Computational methods in fluid dynamics)
- 02.30.Hq: Ordinary differential equations
- 02.60.Pn: Numerical optimization
Journal
Year
Volume
Issue
Pages
1062-1065
Physical description
Dates
published
2017-09
Contributors
author
- Balıkesir University, Department of Mathematics, Balıkesir, Turkey
References
- [1] A.T. Özturan, Acta Phys. Pol. A 128, B-93 (2015), doi: 10.12693/APhysPolA.128.B-93
- [2] A. Recioui, Acta Phys. Pol. A 128, B-7 (2015), doi: 10.12693/APhysPolA.128.B-7
- [3] M.J. Pazdanowski, Acta Phys. Pol. A 128, B-213 (2015), doi: 10.12693/APhysPolA.128.B-213
- [4] A.T. Özturan, Acta Phys. Pol. A 130, 14 (2016), doi: 10.12693/APhysPolA.130.14
- [5] D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, 3rd ed., Springer, New York 2008
- [6] K.J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford University Press, California 1958
- [7] A.V. Fiacco, G.P. Mccormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York 1968
- [8] H. Yamashita, Math. Program. 18, 155 (1976)
- [9] C.A. Botsaris, J. Math. Anal. Appl. 63, 177 (1978), doi: 10.1016/0022-247X(78)90114-2
- [10] A.A. Brown, M.C. Bartholomew-Biggs, J. Optim. Theory Appl. 62, 371 (1989), doi: 10.1007/BF00939812
- [11] Y.G. Evtushenko, V.G. Zhadan, Opt. Meth. Software 3, 237 (1994), doi: 10.1080/10556789408805567
- [12] J. Schropp, I. Singer, Numer. Funct. Anal. Optim. 21, 537 (2000), doi: 10.1080/01630560008816971
- [13] L. Jin, Appl. Math. Comput. 206, 186 (2008)
- [14] N. Özdemir, F. Evirgen, Bull. Malays. Math. Sci. Soc. 33, 79 (2010)
- [15] F. Evirgen, N. Özdemir, J. Comput. Nonlinear Dyn. 6, 021003 (2011), doi: 10.1115/1.4002393
- [16] F. Evirgen, N. Özdemir, A Fractional Order Dynamical Trajectory Approach for Optimization Problem with HPM, Eds. D. Baleanu, J.A.T. Machado, A.C.J. Luo, Springer, 2012, p. 145
- [17] F. Evirgen, Int. J. Optim. Control: Th. Applicat. (IJOCTA) 6, 75 (2016)
- [18] A.E. Xavier, M.Sc. Thesis, Federal University of Rio de Janerio/COPPE, Rio de Janerio 1982
- [19] A.E. Xavier, Intl. Trans. in Op. Res. 8, 659 (2001), doi: 10.1111/1475-3995.t01-1-00330
- [20] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes, Springer-Verlag, Berlin 1981
- [21] K. Schittkowski, More Test Examples For Nonlinear Programming Codes, Springer, Berlin 1987
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app132z3-iip067kz