Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 949-953
Article title

Influence of Cavity Design on Stress Distribution in Second Premolar Tooth Using Finite Element Analysis

Title variants
Languages of publication
The objective of this study is, using finite element analysis, to design cavity geometry, to minimize risk of the fraction and cracking in second premolar tooth. To avoid possible tooth fracture, proper cavity geometry can be designed, to reduce the effect of masticatory forces. Premolar tooth was chosen due to its least strength in comparison to other type of teeth. In literature, there was insufficient study on using finite elements methods to investigate restorated premolar teeth. A healthy premolar tooth was scanned to obtain 3D model of it, to perform finite elements analysis. The validation was performed based on existing experimental data. According to stress distribution, three different cavity geometries were designed using composite resin and ceramic as a restoration material. It is observed that the amount of stress acting on tooth is diminishable with regard to analysis results. Hence, proper cavity geometry and material were found to minimize the risk of tooth fracture.
  • İstanbul Technical University, Mechanical Engineering Fakulty, Ístanbul, Turkey
  • İstanbul Technical University, Mechanical Engineering Fakulty, Ístanbul, Turkey
  • İstanbul Technical University, Mechanical Engineering Fakulty, Ístanbul, Turkey
  • Arzu Kahya, Dentist, PhD, Private Practice, İstanbul, Turkey
  • [1] L. Sandu, F. Topalâ, S.C. Porojan, Int. J. Med. Health Biomed. Bioeng. Pharmaceutical Eng. 11, 342 (2012)
  • [2] K. Zelic, A. Vukicevic, G. Jovicic, S. Aleksandrovic, N. Filipovic, M. Djuric, Int. Endodontic J. 48, 850 (2015), doi: 10.1111/iej.12381
  • [3] D. Parle, A. Ambulgekar, K. Gaikwad, Simul. Driven Innovat., 1 (2012)
  • [4] Z. Huang, Z. Chen, J. Huazhong Univ. Sci. Technol. 33, 775 (2013)
  • [5] G. Milewski, Acta Bioeng. Biomech. 7, 47 (2005)
  • [6] D.Y. Lim, H.C. Kim, B. Hur, K.H. Kim, K. Son, J.K. Park, J. Kor. Acad. Cons. Dent. 34, 69 (2009)
  • [7] U. Kara, A. Mesbani, I. Akkurt, Acta Phys. Pol. A 128, B-372 (2015), doi: 10.12693/APhysPolA.128.B-372
  • [8] U. Kara, D. Yildirim, I. Akkurt, Acta Phys. Pol. A 130, 407 (2016), doi: 10.12693/APhysPolA.130.407
  • [9] U. Kara, I. Akkurt, Acta Phys. Pol. A 130, 404 (2016), doi: 10.12693/APhysPolA.130.404
  • [10] I. Akkurt, R.B. Ermiş, P. Bas, K. Gunoglu, Acta Phys. Pol. A 128, B-34 (2015), doi: 10.12693/APhysPolA.128.B-34
  • [11] Z. Arslanoglu, H. Altan, E. Kale, F. Bilgic, O. Sahin, Acta Phys. Pol. A 130, 388 (2016), doi: 10.12693/APhysPolA.130.388
  • [12] H. Altan, F. Bilgic, Z. Arslanoglu, E. Kale, A.K. Kale, O. Sahin, Acta. Phys. Pol. A 130, 394 (2016), doi: 10.12693/APhysPolA.130.394
  • [13] P.V. Soares, P.C.F. Santos-Filho, H.A. Gomide, C.A. Araujo, L.R.M. Martins, C.J. Soares, J. Prosthetic Denstistry 99, 114 (2008)
  • [14] R.G. Craig (Ed.) Restorative Dental Materials, 9th ed., C.V. Mosby, Saint Louis 1993
  • [15] F.J. Burke, J. Dent. 20, 131 (1992), doi: 10.1016/0300-5712(92)90124-U
  • [16] B. Dejak, A. Mlotkowski, J. Prosthetic Denstistry 99, 131 (2008)
  • [17] M.L. Mei, Y.M. Chen, H. Li, C.H. Chu, BioMed. Eng. OnLine 15, 3 (2016), doi: 10.1186/s12938-015-0115-4
  • [18] I. Kantardžić, D. Vasiljević, L. Blažić, O. Lužanin, Croat. Med. J. 53, 568 (2012), doi: 10.3325/cmj.2012.53.568
  • [19] P. Ausiello, A. Apicella, C.L. Davidson, S. Rengo, J. Biomech. 34, 1269 (2001), doi: 10.1016/S0021-9290(01)00098-7
  • [20] C.L. Lin, Y.H. Chang, P.R. Liu, J. Dent. 36, 194 (2008), doi: 10.1016/j.jdent.2007.11.016
  • [21] P.V. Soares, P.C. Santos-Filho, L.R. Martins, C.J. Soares, J. Prosthet. Dent. 99, 30 (2008), doi: 10.1016/S0022-3913(08)60006-2
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.