Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 941-943
Article title

Production and Characterization of Niobium Toughened Ti-TiAl₃ Metallic-Intermetallic Composite

Title variants
Languages of publication
Ti-TiAl₃ in situ composites with 10 wt.% Nb were successfully prepared from Ti, Al, and Nb metallic powders by powder metallurgy processing technique of electric current activated/assisted sintering. The current and process time used for producing metallic-intermetallic composites were 2000 A and 90 s, respectively. In terms of fracture toughness, effects of addition of ductile niobium phase to Ti-TiAl₃ composites were investigated. According to SEM-EDS and XRD results, the synthesized composites mainly consisted of TiAl₃ matrix and dispersive Nb reinforcing phases, as well as ductile Ti phases. Hardness and fracture toughness values of the samples were measured by Vickers hardness tester under loads of 100 g and 10 kg, respectively. Fracture toughness value of TiAl₃ intermetallic composites was increased with Nb ductile phase addititon from 1.69± 0.05 MPa m^{1/2} to 5.23± 0.3 MPa m^{1/2}.
  • Sakarya University, Metallurgy and Materials Department, Sakarya, Turkey
  • Sakarya University, Metallurgy and Materials Department, Sakarya, Turkey
  • [1] D. Morris, M. Munoz-Morris, Revista de Metalurgia 41, 498 (2005), doi: 10.3989/revmetalm.2005.v41.iExtra.1084
  • [2] N. Ergin, O. Ozdemir, Acta Phys. Pol. A 127, 1103 (2015), doi: 10.12693/APhysPolA.127.1103
  • [3] N. Ergin, G. Yoruk, O. Ozdemir, Acta Phys. Pol. A 123, 245 (2013), doi: 10.12693/APhysPolA.123.245
  • [4] R. Reddy, A. Yahya, L. Brewer, J. Alloys Comp. 321, 223 (2001), doi: 10.1016/S0925-8388(01)00972-0
  • [5] J. Sienkiewicz, S. Kuroda, R.M. Molak, H. Murakami, H. Araki, S. Takamori, K.J. Kurzydłowski, Intermetallics 49, 57 (2014), doi: 10.1016/j.intermet.2013.12.011
  • [6] S. Vaucher, M. Stir, K. Ishizaki, J.M. Catala-Civera, R. Nicula, Thermochim. Acta 522, 151 (2011), doi: 10.1016/j.tca.2010.11.026
  • [7] T. Wang, J. Zhang, Mater. Chem. Phys. 99, 20 (2006), doi: 10.1016/j.matchemphys.2005.08.075
  • [8] M. Mirjalili, M. Soltanieh, K. Matsuura, M. Ohno, Intermetallics 32, 297 (2013), doi: 10.1016/j.intermet.2012.08.017
  • [9] T. Marr, J. Freudenberger, A. Kauffmann, J. Romberg, I. Okulov, R. Petters, J. Scharnweber, A. Eschke, C.-G. Oertel, U. Kühn, J. Eckert, W. Skrotzki, L. Schultz, Metals 3, 188 (2013), doi: 10.3390/met3020188
  • [10] P.-Y. Wang, H.-J. Li, L.-H. Qi, X.-H. Zeng, H.-S. Zuo, Prog. Nat. Sci.: Mater. Int. 21, 153 (2011), doi: 10.1016/s1002-0071(12)60049-5
  • [11] T. Yener, S.C. Yener, S. Zeytin, Mater. Tehnol. 50, 899 (2016), doi: 10.17222/mit.2015.189
  • [12] T. Yener, I. Altinsoy, S.C. Yener, G.F. Celebi Efe, I. Ozbek, C. Bindal, Acta Phys. Pol. A 127, 1045 (2015), doi: 10.12693/APhysPolA.127.1045
  • [13] E. Ercenk, U. Sen, S. Yilmaz, Surf. Coat. Technol. 232, 703 (2013), doi: 10.1016/j.surfcoat.2013.06.084
  • [14] E. Ercenk, U. Sen, S. Yilmaz, Tribol. Int. 52, 94 (2012), doi: 10.1016/j.triboint.2012.03.005
  • [15] A.S. Demirkiran, S. Yilmaz, U. Sen, J. Ceram. Proc. Res. 14, 51 (2013), doi: 10.1111/j.1744-7402.2010.02598.x
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.