Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 879-882
Article title

Comparison of Mechanical Properties of Unidirectional and Woven Carbon, Glass and Aramid Fiber Reinforced Epoxy Composites

Title variants
Languages of publication
In this study, mechanical behavior of epoxy composite reinforced by unidirectional and woven fiber is investigated experimentally. In the preparation of composite samples woven shaped glass, aramid and carbon fibers and unidirectional shaped glass and carbon fibers were used. Tension, compression and shear tests were carried out to determine mechanical properties of composites. It is seen from the test results, that unidirectional carbon fiber shows better performance than the glass fiber. Mechanical properties of 0°-oriented unidirectional fiber are better than those of 90°-oriented unidirectional fiber. Mechanical properties of aramid-fiber-reinforced composite are higher than those of glass and carbon fiber, when the woven types of fibers are considered.
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey
  • [1] A.K. Kaw, Mechanics of composite materials, 2nd ed., Taylor & Francis Group, LLC 2006
  • [2] W.D. Callister Jr, D.G. Rethwisch, Introduction in: Materials science and engineering, 8th ed., John Willey & Sons, 2007
  • [3] D.M. Frangopol, S. Recek, Probabilist. Eng. Mech. 18, 119 (2003), doi: 10.1016/S0266-8920(02)00054-1
  • [4] S. Mortazavian, A. Fatemi, Compos.: Part B 72, 116 (2015), doi: 10.1016/j.compositesb.2014.11.041
  • [5] W. Sun, A.P. Vassilopoulos, T. Keller, Compos. Struct. 130, 9 (2015), doi: 10.1016/j.compstruct.2015.04.028
  • [6] C. Dong, I.J. Davies, Compos.: Part B 72, 65 (2015), doi: 10.1016/j.compositesb.2014.11.031
  • [7] H. Hu, W. Lin, F. Tu, Compos.: Part B 83, 153 (2015), doi: 10.1016/j.compositesb.2015.08.045
  • [8] J.L.Y. Tan, V.S. Deshpande, N.A. Fleck, Compos.: Part A 77, 56 (2015), doi: 10.1016/j.compositesa.2015.06.005
  • [9] K. Naresh, K. Shankar, B.S. Rao, R. Velmurugan, Compos.: Part B 100, 125 (2016), doi: 10.1016/j.compositesb.2016.06.007
  • [10] X. Qian, H. Wang, D. Zhang, G. Wen, Polym. Test. 53, 314 (2016), doi: 10.1016/j.polymertesting.2016.06.006
  • [11] C. Dong, Compos.: Part B 98, 176 (2016), doi: 10.1016/j.compositesb.2016.05.035
  • [12] X. Gao, J.W. Gillespie Jr, R.E. Jensen, W. Li, B.Z. (Gama) Haque, S.H. McKnight, Compos.: Part A 74, 10 (2015), doi: 10.1016/j.compositesa.2015.03.023
  • [13] S. Wicaksono, G.B. Chai, Compos. Struct. 119, 185 (2015), doi: 10.1016/j.compstruct.2014.08.017
  • [14] S. Ekşi, K. Genel, Acta Phys. Pol. A 128, B-59 (2015), doi: 10.12693/APhysPolA.128.B-59
  • [15] N. Ozsoy, M. Ozsoy, A. Mimaroglu, Acta Phys. Pol. A 128, B-55 (2015), doi: 10.12693/APhysPolA.128.B-55
  • [16] N. Ozsoy, M. Ozsoy, A. Mimaroglu, Acta Phys. Pol. A 130, 297 (2016), doi: 10.12693/APhysPolA.130.297
  • [17] I.K. Yilmazcoban, S. Doner, Acta Phys. Pol. A 130, 342 (2016), doi: 10.12693/APhysPolA.130.342
  • [18] N. Çiçek Bezir, A. Evcin, R. Kayali, M. Kaşikçi Özen, K. Esen, B. Cambaz, Acta Phys. Pol. A 130, 300 (2016), doi: 10.12693/APhysPolA.130.300
  • [19] C.P. Ndepete, S. Sert, Acta Phys. Pol. A 130, 355 (2016), doi: 10.12693/APhysPolA.130.355
  • [20] F. Akti, F. Boran, Acta Phys. Pol. A 130, 147 (2016), doi: 10.12693/APhysPolA.130.147
  • [21] ASTM D3039/D3039M-14 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
  • [22] ASTM D3410/D3410M-16 Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading
  • [23] ASTM D3518/D3518M-13 Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ± 45° Laminate
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.