PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 875-878
Article title

Effects of Pre-Forming Process and PVC Foam Reinforcement on the Deformation Behavior of Aluminum Tube under Axial Loading

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, the effects of pre-forming and foam reinforcement on the axial compression behavior of circular thin-walled aluminum tubes were experimentally investigated. Compression tests were performed in a computer controlled test machine at the cross-head speed of 1 mm/s. Pre-forming has changed the folding behavior of tube and increased the energy absorbing capacity 1.26 times that of empty tube. The PVC reinforcement has increased the energy absorbing capacity 1.22 times. PVC reinforcement increases the stability of tube wall deformation; hence it positively affects the energy absorption. The energy absorbing capacity of pre-formed and PVC foam reinforced tubes increase approximately 1.4 times that of empty tube. It was however shown that the reinforcement and pre-forming had no significant effect on the maximum load.
Keywords
Contributors
author
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey
author
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey
author
  • Sakarya University, Mechanical Engineering Department, Sakarya, Turkey
References
  • [1] S.R. Guillow, G. Lu, R.H. Grzebieta, Int. J. Mech. Sci. 43, 2103 (2001), doi: 10.1016/S0020-7403(01)00031-5
  • [2] J.M. Alexander, Quart. J. Mech. Appl. Math. 13, 5 (1960)
  • [3] S.P. Santosa, T. Wierzbicki, A.G. Hanssen, M. Langseth, Int. J. Impact Engin. 24, 509 (2000), doi: 10.1016/S0734-743X(99)00036-6
  • [4] A.G. Hanssen, O.S. Hopperstad, M. Langseth, Int. J. Crashworthiness 6, 177 (2001), doi: 10.1533/cras.2001.0171
  • [5] M. Güden, A.K. Toksoy, H. Kavi, J. Mater. Sci. 41, 6417 (2006), doi: 10.1007/s10853-006-0722-3
  • [6] M. Seitzberger, F.G. Rammerstorfer, R. Gradinger, H.P. Degischer, M. Blaimschein, C. Walch, Int. J. Solids Struct. 37, 4125 (2000), doi: 10.1016/S0020-7683(99)00136-5
  • [7] K. Heung-Soo, Int. J. Crashworthiness 6, 189 (2001), doi: 10.1533/cras.2001.0172
  • [8] M. Güden, H. Kavia, Thin-Walled Struct. 44, 739 (2006), doi: 10.1016/j.tws.2006.07.003
  • [9] I.W. Hall, M. Güden, T.D. Claar, Scripta Materialia 46, 513 (2002), doi: 10.1016/S1359-6462(02)00024-6
  • [10] L. Aktay, A.K. Toksoy, M. Güden, Mater. Design 27, 556 (2006), doi: 10.1016/j.matdes.2004.12.019
  • [11] J.M. Babbage, P.K. Mallick, Composite Struct. 70, 177 (2005), doi: 10.1016/j.compstruct.2004.08.021
  • [12] M. Davraz, Ş. Kilinçarslan, M. Koru, F. Tuzlak, Acta Phys. Pol. A 130, 469 (2016), doi: 10.12693/APhysPolA.130.469
  • [13] M.R. Bambach, Thin-Walled Struct. 48, 440 (2010), doi: 10.1016/j.tws.2010.01.006
  • [14] M.R. Bambach, H.H. Jama, M. Elchalakani, Thin-Walled Struct. 47, 1112 (2009), doi: 10.1016/j.tws.2008.10.006
  • [15] C.S. Cha, K.S. Lee, S.H. Kim, J.O. Chung, I.Y. Yang, Key Engin. Mater. 297, 166 (2005), doi: 10.4028/www.scientific.net/KEM.297-300.166
  • [16] K.C. Shin, J.J. Lee, K.H. Kim, M.C. Song, J.S. Huh, Composite Struct. 57, 279 (2002), doi: 10.1016/S0263-8223(02)00094-6
  • [17] K.H. Kim, K.C. Shin, J.J. Lee, Key Engin. Mater. 183, 1147 (2000), doi: 10.4028/www.scientific.net/KEM.183-187.1147
  • [18] S. Ekşi, K. Genel, Acta Phys. Pol. A 128, B-59 (2015), doi: 10.12693/APhysPolA.128.B-59
  • [19] G.İ. Sezer, Ş. Yazıcı, A. Sezer, Acta Phys. Pol. A 128, B-37 (2015), doi: 10.12693/APhysPolA.128.B-37
  • [20] I.K. Yilmazcoban, S. Doner, Acta Phys. Pol. A 130, 342 (2016), doi: 10.12693/APhysPolA.130.342
  • [21] ASTM E8/E8M standard test methods for tension testing of metallic materials
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app132z3-iip020kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.