Journal
Article title
Title variants
Languages of publication
Abstracts
In this study, the effects of pre-forming and foam reinforcement on the axial compression behavior of circular thin-walled aluminum tubes were experimentally investigated. Compression tests were performed in a computer controlled test machine at the cross-head speed of 1 mm/s. Pre-forming has changed the folding behavior of tube and increased the energy absorbing capacity 1.26 times that of empty tube. The PVC reinforcement has increased the energy absorbing capacity 1.22 times. PVC reinforcement increases the stability of tube wall deformation; hence it positively affects the energy absorption. The energy absorbing capacity of pre-formed and PVC foam reinforced tubes increase approximately 1.4 times that of empty tube. It was however shown that the reinforcement and pre-forming had no significant effect on the maximum load.
Discipline
- 81.70.-q: Methods of materials testing and analysis(see also 82.80.-d Chemical analysis and related physical methods of analysis)
- 81.05.Pj: Glass-based composites, vitroceramics
- 81.05.Rm: Porous materials; granular materials(for granular superconductors, see 74.81.Bd)
- 81.05.Bx: Metals, semimetals, and alloys
- 81.40.Lm: Deformation, plasticity, and creep(see also 83.50.-v Deformation and flow in rheology)
- 81.05.-t: Specific materials: fabrication, treatment, testing, and analysis(for superconducting materials, see 74.70.-b, and 74.72.-h; for magnetic materials, see 75.50.-y; for optical materials, see 42.70.-a; for dielectric materials, see 77.84.-s; for disperse systems and complex fluids, see 82.70.-y; see also 82.75.-z Molecular sieves, zeolites, clathrates, and other complex solids; for materials properties, see sections 60 and 70)
Journal
Year
Volume
Issue
Pages
875-878
Physical description
Dates
published
2017-09
References
- [1] S.R. Guillow, G. Lu, R.H. Grzebieta, Int. J. Mech. Sci. 43, 2103 (2001), doi: 10.1016/S0020-7403(01)00031-5
- [2] J.M. Alexander, Quart. J. Mech. Appl. Math. 13, 5 (1960)
- [3] S.P. Santosa, T. Wierzbicki, A.G. Hanssen, M. Langseth, Int. J. Impact Engin. 24, 509 (2000), doi: 10.1016/S0734-743X(99)00036-6
- [4] A.G. Hanssen, O.S. Hopperstad, M. Langseth, Int. J. Crashworthiness 6, 177 (2001), doi: 10.1533/cras.2001.0171
- [5] M. Güden, A.K. Toksoy, H. Kavi, J. Mater. Sci. 41, 6417 (2006), doi: 10.1007/s10853-006-0722-3
- [6] M. Seitzberger, F.G. Rammerstorfer, R. Gradinger, H.P. Degischer, M. Blaimschein, C. Walch, Int. J. Solids Struct. 37, 4125 (2000), doi: 10.1016/S0020-7683(99)00136-5
- [7] K. Heung-Soo, Int. J. Crashworthiness 6, 189 (2001), doi: 10.1533/cras.2001.0172
- [8] M. Güden, H. Kavia, Thin-Walled Struct. 44, 739 (2006), doi: 10.1016/j.tws.2006.07.003
- [9] I.W. Hall, M. Güden, T.D. Claar, Scripta Materialia 46, 513 (2002), doi: 10.1016/S1359-6462(02)00024-6
- [10] L. Aktay, A.K. Toksoy, M. Güden, Mater. Design 27, 556 (2006), doi: 10.1016/j.matdes.2004.12.019
- [11] J.M. Babbage, P.K. Mallick, Composite Struct. 70, 177 (2005), doi: 10.1016/j.compstruct.2004.08.021
- [12] M. Davraz, Ş. Kilinçarslan, M. Koru, F. Tuzlak, Acta Phys. Pol. A 130, 469 (2016), doi: 10.12693/APhysPolA.130.469
- [13] M.R. Bambach, Thin-Walled Struct. 48, 440 (2010), doi: 10.1016/j.tws.2010.01.006
- [14] M.R. Bambach, H.H. Jama, M. Elchalakani, Thin-Walled Struct. 47, 1112 (2009), doi: 10.1016/j.tws.2008.10.006
- [15] C.S. Cha, K.S. Lee, S.H. Kim, J.O. Chung, I.Y. Yang, Key Engin. Mater. 297, 166 (2005), doi: 10.4028/www.scientific.net/KEM.297-300.166
- [16] K.C. Shin, J.J. Lee, K.H. Kim, M.C. Song, J.S. Huh, Composite Struct. 57, 279 (2002), doi: 10.1016/S0263-8223(02)00094-6
- [17] K.H. Kim, K.C. Shin, J.J. Lee, Key Engin. Mater. 183, 1147 (2000), doi: 10.4028/www.scientific.net/KEM.183-187.1147
- [18] S. Ekşi, K. Genel, Acta Phys. Pol. A 128, B-59 (2015), doi: 10.12693/APhysPolA.128.B-59
- [19] G.İ. Sezer, Ş. Yazıcı, A. Sezer, Acta Phys. Pol. A 128, B-37 (2015), doi: 10.12693/APhysPolA.128.B-37
- [20] I.K. Yilmazcoban, S. Doner, Acta Phys. Pol. A 130, 342 (2016), doi: 10.12693/APhysPolA.130.342
- [21] ASTM E8/E8M standard test methods for tension testing of metallic materials
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app132z3-iip020kz