Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The present study is to clarify the present influences of acid concentration and temperature of caustic hydrothermal method on extracting the titanium dioxide (TiO₂) from synthetic rutile waste. In this experimental work, the caustic hydrothermal method comprises two processes: a decomposition and the sulphate process. The extracted titanium is characterized by using a electron dispersive X-ray spectroscopy to specify its chemical composition, field emission scanning electron microscope to determine the morphology and particle size, and lastly it is the X-ray diffraction to analyse the crystallinity of extracted titanium. In this study, we found that both acid concentration and temperature affected the TiO₂ growth while the calcination process could improve the crystallinity of extracted titanium.
Journal
Year
Volume
Issue
Pages
833-835
Physical description
Dates
published
2017-09
Contributors
author
- University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
author
- University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
author
- University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
author
- University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
References
- [1] L. Jia, B. Liang, L. Lü, S. Yuan, L. Zheng, X. Wang, C. Li, Hydrometallurgy 150, 92 (2014), doi: 10.1016/j.hydromet.2014.09.016
- [2] C. Sasikumar, D.S. Rao, S. Srikanth, B. Ravikumar, N.K. Mukhopadhyay, S.P. Mehrotra, Hydrometallurgy 75, 189 (2004), doi: 10.1016/j.hydromet.2004.08.001
- [3] M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40, 5489 (2014), doi: 10.1016/j.ceramint.2013.10.137
- [4] S. Zhang, M.J. Nicol, Hydrometallurgy 97, 146 (2009), doi: 10.1016/j.hydromet.2009.02.009
- [5] M. Boutinguiza, J. del Val, A. Riveiro, F. Lusquińos, F. Quintero, R. Comesańa, J. Pou, Phys. Proced. 41, 787 (2013), doi: 10.1016/j.phpro.2013.03.149
- [6] Z. Kožáková, M. Mrlík, M. Sedlačík, V. Pavlínek, I. Kuřitka, in: Proc. NanoCon 2011, Brno, Technical University of Ostrava, Ostrava 2011, p. 2
- [7] D. Chen, L. Zhao, Y. Liu, T. Qi, J. Wang, L. Wang, J. Hazard. Mater. 244-245, 588 (2013), doi: 10.1016/j.jhazmat.2012.10.052
- [8] H.H. Ou, S.L. Lo, Sep. Purif. Technol. 58, 179 (2007), doi: 10.1016/j.seppur.2007.07.017
- [9] Y. Zhang, T. Qi, Y. Zhang, Hydrometallurgy 96, 52 (2009), doi: 10.1016/j.hydromet.2008.08.002
- [10] M.S. Meor Yusoff, M.M. Masliana, W. Paulus, P. Devi, M.E. Mahmoud, J. Sci. Technol. 2, 15 (2011)
- [11] E.M. Mahdi, M. Hamdi, M.S. Yusoff, P. Wilfred, J. Nano Res. 21, 71 (2013), doi: 10.4028/www.scientific.net/JNanoR.21.71
- [12] M. Mozammel, A. Mohammadzadeh, Measurement 66, 184 (2015), doi: 10.1016/j.measurement.2015.02.025
- [13] S. Zhang, M.J. Nicol, Hydrometallurgy 103, 196 (2010), doi: 10.1016/j.hydromet.2010.03.019
- [14] R. Razavi, S.M.A. Hosseini, M. Ranjbar, Iran. J. Chem. Chem. Eng. 33, 29 (2014)
- [15] C. Li, B. Liang, Hydrometallurgy 89, 1 (2007), doi: 10.1016/j.hydromet.2007.04.002
- [16] A. Mehdilo, M. Irannajad, Physicochem. Probl. Miner. Process. 48, 425 (2012), doi: 10.5277/ppmp120209
- [17] W. Zhang, Z. Zhu, C.Y. Cheng, Hydrometallurgy 108, 177 (2011), doi: 10.1016/j.hydromet.2011.04.005
- [18] D.A. Lane, Directive 89/428, Boston Coll. Int. Comparat. Law Rev. 14, 16 (1991)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app132z3-iip008kz