PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 833-835
Article title

Experimental Analysis of Titanium Dioxide Synthesis from Synthetic Rutile Waste using a Moderate Acid Concentration and Temperature

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present study is to clarify the present influences of acid concentration and temperature of caustic hydrothermal method on extracting the titanium dioxide (TiO₂) from synthetic rutile waste. In this experimental work, the caustic hydrothermal method comprises two processes: a decomposition and the sulphate process. The extracted titanium is characterized by using a electron dispersive X-ray spectroscopy to specify its chemical composition, field emission scanning electron microscope to determine the morphology and particle size, and lastly it is the X-ray diffraction to analyse the crystallinity of extracted titanium. In this study, we found that both acid concentration and temperature affected the TiO₂ growth while the calcination process could improve the crystallinity of extracted titanium.
Publisher

Year
Volume
132
Issue
3
Pages
833-835
Physical description
Dates
published
2017-09
Contributors
  • University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
author
  • University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
author
  • University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
author
  • University Malaysia Sabah, Faculty of Engineering, Kota Kinabalu, 88400 Sabah, Malaysia
References
  • [1] L. Jia, B. Liang, L. Lü, S. Yuan, L. Zheng, X. Wang, C. Li, Hydrometallurgy 150, 92 (2014), doi: 10.1016/j.hydromet.2014.09.016
  • [2] C. Sasikumar, D.S. Rao, S. Srikanth, B. Ravikumar, N.K. Mukhopadhyay, S.P. Mehrotra, Hydrometallurgy 75, 189 (2004), doi: 10.1016/j.hydromet.2004.08.001
  • [3] M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40, 5489 (2014), doi: 10.1016/j.ceramint.2013.10.137
  • [4] S. Zhang, M.J. Nicol, Hydrometallurgy 97, 146 (2009), doi: 10.1016/j.hydromet.2009.02.009
  • [5] M. Boutinguiza, J. del Val, A. Riveiro, F. Lusquińos, F. Quintero, R. Comesańa, J. Pou, Phys. Proced. 41, 787 (2013), doi: 10.1016/j.phpro.2013.03.149
  • [6] Z. Kožáková, M. Mrlík, M. Sedlačík, V. Pavlínek, I. Kuřitka, in: Proc. NanoCon 2011, Brno, Technical University of Ostrava, Ostrava 2011, p. 2
  • [7] D. Chen, L. Zhao, Y. Liu, T. Qi, J. Wang, L. Wang, J. Hazard. Mater. 244-245, 588 (2013), doi: 10.1016/j.jhazmat.2012.10.052
  • [8] H.H. Ou, S.L. Lo, Sep. Purif. Technol. 58, 179 (2007), doi: 10.1016/j.seppur.2007.07.017
  • [9] Y. Zhang, T. Qi, Y. Zhang, Hydrometallurgy 96, 52 (2009), doi: 10.1016/j.hydromet.2008.08.002
  • [10] M.S. Meor Yusoff, M.M. Masliana, W. Paulus, P. Devi, M.E. Mahmoud, J. Sci. Technol. 2, 15 (2011)
  • [11] E.M. Mahdi, M. Hamdi, M.S. Yusoff, P. Wilfred, J. Nano Res. 21, 71 (2013), doi: 10.4028/www.scientific.net/JNanoR.21.71
  • [12] M. Mozammel, A. Mohammadzadeh, Measurement 66, 184 (2015), doi: 10.1016/j.measurement.2015.02.025
  • [13] S. Zhang, M.J. Nicol, Hydrometallurgy 103, 196 (2010), doi: 10.1016/j.hydromet.2010.03.019
  • [14] R. Razavi, S.M.A. Hosseini, M. Ranjbar, Iran. J. Chem. Chem. Eng. 33, 29 (2014)
  • [15] C. Li, B. Liang, Hydrometallurgy 89, 1 (2007), doi: 10.1016/j.hydromet.2007.04.002
  • [16] A. Mehdilo, M. Irannajad, Physicochem. Probl. Miner. Process. 48, 425 (2012), doi: 10.5277/ppmp120209
  • [17] W. Zhang, Z. Zhu, C.Y. Cheng, Hydrometallurgy 108, 177 (2011), doi: 10.1016/j.hydromet.2011.04.005
  • [18] D.A. Lane, Directive 89/428, Boston Coll. Int. Comparat. Law Rev. 14, 16 (1991)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-app132z3-iip008kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.