PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 65 | 1 | 67-78
Article title

Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase

Content
Title variants
Languages of publication
EN
Abstracts
EN
Type 2 diabetes mellitus (T2D) is a chronic diet-related disease which due to many dangerous complications has become a prominent health problem of the world. The aim of the study was to explore the in vitro activity of Japanese quince (Chaenomeles japonica L., family Rosaceae, JQ) fruit polyphenolic extract as modulator of carbohydrates metabolism. The research was designed to investigate the effect of JQ polyphenolic extract on glucose metabolism in human hepatoma HepG2 cell line cultured under normal non-metabolically changed and hyperglycemic conditions. Pretreatment of the cells with JQ preparation caused decrease of intracellular ROS generation and influenced mitochondrial membrane polarization which seemed to lead to AMPK activation. Further effects observed in HepG2 cells were associated with activation of the enzyme: elevation of glucose uptake and glycogen content, and alleviation of gluconeogenesis through modulation of PEPCK, PTP1B, FOXO1 and GLUT2/4 expression. These findings suggest that JQ polyphenols exhibit hypoglycemic effects via modulation of AMPK signaling in hepatocytes.
Publisher

Year
Volume
65
Issue
1
Pages
67-78
Physical description
Dates
published
2018
received
2017-05-05
revised
2017-12-04
accepted
2017-12-11
(unknown)
2018-03-01
Contributors
  • Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Technical Biochemistry, Łódź, Poland
author
  • Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Technical Biochemistry, Łódź, Poland
References
  • Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12: 43. doi: 10.1186/2251-6581-12-43.
  • Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6: a009191. doi: 10.1101/cshperspect.a009191.
  • Brereton MF, Rohm M, Ashcroft FM (2016) β-Cell dysfunction in diabetes: a crisis of identity? Diabetes Obes Metab 18 (Suppl 1): 102-109. doi: 10.1111/dom.12732.
  • Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Science 125: 2115-2125. doi: 10.1242/jcs.095216.
  • Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. J Biol Chem 282: 30143-30149.
  • Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7: 241-253. doi: 10.2147/DMSO.S43731.
  • Crescenti A, del Bas JM, Arola-Arnal A, Oms-Oliu G, Arola L, Caimari A (2015) Grape seed procyanidins administered at physiological doses to rats during pregnancy and lactation promote lipid oxidation and up-regulate AMPK in the muscle of male offspring in adulthood. J Nutr Biochem 26: 912-920. doi: 10.1016/j.jnutbio.2015.03.003.
  • Dai J, Liu M, Ai Q, Lin L, Wu K, Deng X, Jing Y, Jia M, Wan J, Zhang L (2014) Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury. Chem Biol Interact 216: 34-42. doi: 10.1016/j.cbi.2014.03.013.
  • Doan KV, Ko CM, Kinyua AW, Yang DJ, Choi YH, Oh IY, Nguyen NM, Ko A, Choi JW, Jeong Y, Jung MH, Cho WG, Xu S, Park KS, Park WJ, Choi SY, Kim HS, Moh SH, Kim KW (2015) Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 156: 157-168. doi: 10.1210/en.2014-1354.
  • Du H, Wu J, Li H (2013) Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem 141: 4260-4268. doi: 10.1016/j.foodchem.2013.06.109.
  • Freisleben HJ, Rucker TS, Wiernsperger N, Zimmer G (1992) The effects of glucose insulin and metforminon the order parameters of isolated red cellmembranes; an electron paramagnetic resonance spectroscopicstudy. Biochem Pharmacol 43: 1185-1194.
  • Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin O, Dhalluin S, Atienzar FA (2012) Characterization of primary human hepatocytes HepG2 cellsand HepaRG cells at the mRNA level and CYP activityin response to inducers and their predictivity for the detectionof human hepatotoxins. Cell Biol Toxicol 28: 69-87. doi: 10.1007/s10565-011-9208-4.
  • Goncalves G, Gregorio I, Catarino TA, Martel F (2013) The effect of oxidative stress upon the intestinal epithelial uptake of butyrate. Eur J Pharmacol 699: 88-100. http: //dx. doi.org/10.1016/j.ejphar.2012.11.029.
  • Gorlach S, Wagner W, Podsędek A, Szewczyk K, Koziołkiewicz M, Dastych J (2011) Procyanidins from Japanese quince (Chaenomeles japonica) fruit induce apoptosis in human colon cancer Caco-2 cells in a degree of polymerization-dependent manner. Nutr Cancer 63: 1348-1360. doi: 10.1080/01635581.2011.608480.
  • Hardie DG (2016) Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 6: 1-19. doi: 10.1016/j.apsb.2015.06.002.
  • Hardie DG (2014) AMPK - sensing energy while talking to other signaling pathways. Cell Metab 20: 939-952. doi: 10.1016/j.cmet.2014.09.013.
  • Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36: 470-477. doi: 10.1016/j.tibs.2011.06.004.
  • Hostalek U, Gwilt M, Hildemann S (2015) Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs 75: 1071-1094. doi: 10.1007/s40265-015-0416-8.
  • Im SS, Kang SY, Kim SY, Kim H, Kim JW, Kim KS, Ahn YH (2005) Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes 54: 1684-1691. doi: 10.2337/diabetes.54.6.1684.
  • Jitrapakdee S (2012) Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 44: 33-45. doi: 10.1016/j.biocel.2011.10.001.
  • Julian D, April KL, Patel S, Stein JR, Wohlgemuth SE (2005) Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate J Exp Biol 208: 4109-4122.
  • Karim S, Adams DH, Lalor PF (2012) Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol 18: 6771-6781. doi: 10.3748/wjg.v18.i46.6771.
  • Kerimi A, Jailani F, Williamson G (2015) Modulation of cellular glucose metabolism in human HepG2 cells by combinations of structurally related flavonoids. Mol Nutr Food Res 59: 894-906. doi: 10.1002/mnfr.201400850.
  • Kim JJ, Tan Y, Xiao L, Sun YL, Qu X (2013) Green Tea Polyphenol Epigallocatechin-3-Gallate enhances glycogen synthesis and inhibits lipogenesis in hepatocytes. Biomed Res Int 2013: 920128. doi: 10.1155/2013/920128.
  • Kurimoto Y, Shibayama Y, Inoue S, Soga M, Takikawa M, Ito C, Nanba F, Yoshida T, Yamashita Y, Ashida H, Tsuda T (2013) Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. J Agric Food Chem 61: 5558-5564. doi: 10.1021/jf401190y.
  • Lewandowska U, Szewczyk K, Owczarek K, Hrabec Z, Podsędek A, Koziołkiewicz M, Hrabec E (2013) Flavanols from Japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in Bax/Bcl-2 mRNA ratio. Nutr Cancer 65: 273-285. doi: 10.1080/01635581.2013.749292.
  • Liu X, Chhipa RR, Nakano I, Dasgupta B (2014) The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther 13: 596-605. doi: 10.1158/1535-7163.MCT-13-0579.
  • Martín MA, Ramos S, Cordero-Herrero I, Bravo L, Goya L (2013) Cocoa phenolic extract protects pancreatic beta cells against oxidativestress. Nutrients 5: 2955-2968. doi: 10.3390/nu5082955.
  • O-Sullivan IS, Zhang W, Wasserman DH, Liew CW, Liu J, Paik J, DePinho RA, Stolz DB, Kahn CR, Schwartz MW, Unterman TG (2015) FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun 6: 7079. doi: 10.1038/ncomms8079.
  • Scott JW, Ling NM, Issa SM, Dite TA, O'Brien MT, Chen ZP, Galic S, Langendorf CG, Steinberg GR, Kemp BE, Oakhill JS (2014) Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chem Biol 21: 619-627. doi: 10.1016/j.chembiol.2014.03.006.
  • Scheidt HA, Pampel A, Nissler L, Gebhardt R, Huster D (2004) Investigation of the membrane localization and distribution offlavonoids by high-resolution magic angle sinning NMR spectroscopy. Biochim Biophys Acta 1663: 97-107. doi: 10.1016/j.bbamem.2004.02.004.
  • Snoussi C, Ducroc R, Hamdaoui MH, Dhaouadi K, Abaidi H, Cluzeaud F, Nazaret C, Le Gall M, Bado A (2014) Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. J Nutr Biochem 25: 557-564. doi: 10.1016/j.jnutbio.2014.01.006.
  • Stręk M, Gorlach S, Podsędek A, Sosnowska D, Koziołkiewicz M, Hrabec Z, Hrabec E (2007) Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP-2 and MMP-9 metalloproteinases. J Agric Food Chem 55: 6447-6452.
  • Strugała P, Cyboran-Mikołajczyk S, Dudra A, Mizgier P, Kucharska AZ, Olejniczak T, Gabrielska J (2016) Biological activity of Japanese quince extract and its interactions with lipids erythrocyte membrane and human albumin. J Membr Biol 249: 393-410. doi: 10.1007/s00232-016-9877-2.
  • Tarahovsky Y, Kim YA, Yagolnik EA, Muzafarov EN (2014) Flavonoid-membrane interactions: Involvement of flavonoid - metal complexes in raft signaling. Biochim Biophys Acta 1838: 1235–1246. doi: 10.1016/j.bbamem.2014.01.021.
  • Tarko T, Duda-Chodak A, Satora P, Sroka P, Pogoń P, Machalica J (2014) Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J Food Sci Technol 51: 3934-3941. doi: 10.1007/s13197-013-0963-5.
  • Ueda M, Furuyashiki T, Yamada K, Aoki Y, Sakane I, Fukuda I, Yoshida K, Ashida H (2010) Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food Funct 1: 167-173. doi: 10.1039/c0fo00105h.
  • Węgłowska E, Szustak M, Gendaszewska-Darmach E (2015) Proangiogenic properties of nucleoside 5'-O-phosphorothioate analogues under hyperglycaemic conditions. Curr Top Med Chem 15: 2464-2474. doi: 10.2174/1568026615666150619142859.
  • World Health Organization (2016). http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1 (accessed 10.01.17)
  • Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through Sirt1 dependent mechanism. J Biol Chem 286: 6049-6060. doi: 10.1074/jbc.M110.176842.
  • Viollet B, Guigas B, Garcia NS, Leclerc J, Fore M (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122: 253-270. doi: 10.1042/CS20110386.
  • von Wilamowitz-Moellendorff A, Hunter RW, García-Rocha M, Kang L, López-Soldado I, Lantier L, Patel K, Peggie MW, Martínez-Pons C, Voss M, Calbó J, Cohen PT, Wasserman DH, Guinovart JJ, Sakamoto K (2013) Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes 62: 4070-4082. doi: 10.2337/db13-0880.
  • Weijers RN (2012) Lipid composition of cell membranes and its relevance in Type 2 Diabetes Mellitus. Curr Diabetes Rev 8: 390-400. doi: 10.2174/157339912802083531.
  • Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H (2016) Procyanidin promotes translocation of glucose transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways. PLoS One 11: e0161704. doi: 10.1371/journal.pone.0161704.
  • Yamashita Y, Okabe M, Natsume M, Ashida H (2012) Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle. J Nutr Sci 1: e2. doi: 10.1017/jns.2012.2.
  • Zakłos-Szyda M, Majewska I, Redzynia M, Koziołkiewicz M (2015) Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase α-glucosidase and PTP1B inhibitors and β pancreatic cells cytoprotective agents - a comparative study. Curr Top Med Chem 15: 2431–2444. doi: 10.2174/1568026615666150619143051.
  • Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 279: 47898-47905. doi: 10.1074/jbc.M408149200.
  • Zheng Y, Morris A, Sunkara M, Layne J, Toborek M, Hennig B (2012) Epigallocatechin-gallate stimulates NF-E2-related factor and heme oxygenase-1 via caveolin-1 displacement. J Nutr Biochem 23: 163-168. doidoi: 10.1016/j.jnutbio.2010.12.002.
  • Zhou K, Yee SW, Seiser EL, van Leeuwen N, Tavendale RA, Bennett AJ, Groves CJ, Coleman RL, van der Heijden AA, Beulens JW, de Keyser CE, Zaharenko L, Rotroff DM, Out M, Jablonski KA, Chen L, Javorský M, Židzik J, Levin AM, Williams LK, Dujic T, Semiz S, Kubo M, Chien HC, Maeda S, Witte JS, Wu L, Tkáč I, Kooy A, van Schaik RHN, Stehouwer CDA, Logie L; MetGen Investigators; DPP Investigators; ACCORD Investigators, Sutherland C, Klovins J, Pirags V, Hofman A, Stricker BH, Motsinger-Reif AA, Wagner MJ, Innocenti F, 't Hart LM, Holman RR, McCarthy MI, Hedderson MM, Palmer CNA, Florez JC, Giacomini KM, Pearson ER (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48: 1055-1059. doi: 10.1038/ng.3632.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv65p67kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.