Preferences help
enabled [disable] Abstract
Number of results
2018 | 65 | 3 | 391-396
Article title

Transposon-associated polymorphisms of stress-responsive gene promoters in selected accessions of Arabidopsis thaliana

Title variants
Languages of publication
Genetic diversity caused by transposable element movement can play an important role in plant adaptation to local environments. Regarding genes, transposon-induced alleles were mostly related to gene bodies and a few of them to promoter regions. In this study, promoter regions of 9 stress-related genes were searched for transposable element insertions in 12 natural accessions of Arabidopsis thaliana. The promoter screening was performed via PCR amplification with primers designed to flank transposable element insertions in the promoter regions of the reference accession Col-0. Transposable element-associated insertion/deletion (indel) polymorphisms were identified in 7 of the 12 promoter loci across studied accessions that can be developed further as molecular markers. The transposable element absence in the promoter regions of orthologous genes in A. lyrata indicated that the insertion of these transposable elements in A. thaliana lineage had occurred after its divergence from A. lyrata. Sequence analysis of the promoter regions of CML41 (Calmodulin-like protein 41) and CHAP (chaperone protein dnaJ-related) confirmed the indel polymorphic sites in four accessions - Col-0, Wassilewskija, Shahdara, and Pirin. The observed indel polymorphism of the CHAP promoter region was associated with specific gene expression profiles in the different accessions grown at a normal and elevated temperature in a plant growth chamber. The collected data can be a starting point for gene expression profiling studies under conditions resembling the natural habitats of accessions.
Physical description
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Institute of Molecular Biology and Biotechnology, Plovdiv, Bulgaria
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Institute of Molecular Biology and Biotechnology, Plovdiv, Bulgaria
  • Institute of Molecular Biology and Biotechnology, Plovdiv, Bulgaria
  • Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
  • Institute of Molecular Biology and Biotechnology, Plovdiv, Bulgaria
  • Andika IB, Kondo H, Rahim MD, Tamada T (2006) Lower levels of transgene silencing in roots is associated with reduced DNA methylation levels at non-symmetrical sites but not at symmetrical sites. Plant Mol Biol 60: 423-35. doi: 10.1007/s11103-005-4429-7.
  • Baev V, Naydenov M, Apostolova E, Ivanova D, Doncheva S, Minkov I, Yahubyan G (2010) Identification of RNA-dependent DNA-methylation regulated promoters in Arabidopsis. Plant Physiol Biochem 48: 393-400. doi: 10.1016/j.plaphy.2010.03.013.
  • Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48: 539-547. doi: 10.1023/A:1014841612043.
  • Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: 956-963. doi: 10.1038/ng.911.
  • Casacuberta E, Gonzalez J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22: 1503-1517. doi: 10.1111/mec.12170.
  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12: 133-139. doi: 10.1016/j.pbi.2008.12.006.
  • Chu CG, Tan CT, Yu GT, Zhong S, Xu SS, Yan L (2011) A Novel Retrotransposon inserted in the dominant vrn-b1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3 (Bethesda) 1: 637-645. doi: 10.1534/g3.111.001131.
  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsisi. Plant Physiol 139: 5-17. doi: 10.1104/pp.105.063743.
  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4: 25. doi: 10.1186/1471-2105-4-25.
  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3: 329-41. doi: 10.1038/nrg793.
  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41: 331-368. doi: 10.1146/annurev.genet.40.110405.090448.
  • Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Rätsch G, Mott R. (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477: 419-423. doi: 10.1038/nature10414.
  • Goettel W, Messing J (2009) Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA. PLoS Genet 5: e1000516. doi: 10.1371/journal.pgen.1000516.
  • Grandbastien MA (2004) Stress activation and genomic impact of plant retrotransposons. J Soc Biol 198: 425-432.
  • Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18: 104-118. doi: 10.1105/tpc.105.037655.
  • Henderson IR, Jacobsen SE (2008) Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22: 1597-1606. doi: 10.1101/gad.1667808.
  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19: 1419-1428. doi: 10.1101/gr.091678.109.
  • Hu YX, Wang YH, Liu XF, Li JY (2004) Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development Cell Res 14: 8-15. doi: 10.1038/
  • Ito H (2012) Small RNAs and transposon silencing in plants. Dev Growth Differ 54: 100-107. doi: 10.1111/j.1440-169X.2011.01309.x.
  • Ito H, Yoshida T, Tsukahara S, Kawabe A (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518: 256-261. doi: 10.1016/j.gene.2013.01.034.
  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98: 8714-8719. doi: 10.1073/pnas.151269298.
  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102-106. doi: 10.1038/ng1063.
  • Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5: e57. doi: 10.1371/journal.pbio.0050057.
  • Kazazian HH, Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626-1632. doi: 10.1126/science.1089670.
  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115: 49-63. doi: 10.1023/A:1016072014259.
  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305. doi: 10.1126/science.1146281.
  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60: 43-66. doi: 10.1146/annurev.arplant.59.032607.092744.
  • Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523-536. doi: 10.1016/j.cell.2008.03.029.
  • Matzke MA, Kanno T, Matzke AJ (2015) RNA-Directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66: 243-267. doi: 10.1146/annurev-arplant-043014-114633.
  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci U S A 101: 14349-14354. doi: 10.1073/pnas.0406163101.
  • Mosher RA, Schwach F, Studholme D, Baulcombe DC (2008) PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc Natl Acad Sci U S A 105: 3145-3150. doi: 10.1073/pnas.0709632105.
  • Muterko A, Kalendar R, Cockram J, Balashova I (2015) Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat. Plant Mol Biol 88: 149-164. doi: 10.1007/s11103-015-0313-2.
  • Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19: 2030-2040. doi: 10.1101/gad.348405.
  • Schmidt T (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol Biol 40: 903-910. doi: 10.1023/A:1006212929794.
  • Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N, Henz SR, Huson DH, Weigel D (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108: 10249-10254. doi: 10.1073/pnas.1107739108.
  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277: 37741-37746. doi: 10.1074/jbc.M204050200.
  • Yamasaki K1, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16: 3448-3459. doi: 10.1105/tpc.104.026112.
  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA. (2007) Epigenetic natural variation in Arabidopsis thalianai. PLoS Biol 5: e174. doi: 10.1371/journal.pbio.0050174.
  • Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9: e1003255. doi: 10.1371/journal.pgen.1003255.
  • Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW (2008) A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant 1: 720-731. doi: 10.1093/mp/ssn022.
  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61-69. doi: 10.1038/ng1929.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.