Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 65 | 3 | 351-358

Article title

Acute hepatologic and nephrologic effects of calcitriol in Syrian golden hamster (Mesocricetus auratus)

Content

Title variants

Languages of publication

EN

Abstracts

EN
Although vitamin D is included in the group of fat-soluble vitamins, it must be considered as a prohormone. Its active forms, including calcitriol, have pleiotropic effects and play an important role in the regulation of cell proliferation, differentiation and apoptosis, as well as in hormone secretion, and they demonstrate anti-cancer properties. Since calcitriol delivery can be beneficial for the organism, and Syrian golden hamsters represent a unique experimental model, we decided to investigate its toxicity in this species. In this study, we injected calcitriol intraperitoneally at doses 0 (control), 0.180±0.009 µg/kg and 0.717±0.032 µg/kg. Animal behavior was observed for 72 hrs after injection, and afterwards blood, liver and kidneys were collected for post-mortem examination, electron microscopy, and hematology analyses. The highest dose of calcitriol induced a change in animal behavior from calm to aggressive, and the liver surface showed morphological signs of damage. Following injection of calcitriol, ultrastructural changes were also observed in the liver and kidneys, e.g. vacuolization and increased number of mitochondria. There was also a trend for increased serum levels of aspartate aminotransferase (AST), but not of alanine aminotransferase (ALT) or GGTP (gamma-glutamyl transpeptidase). There was no change in Ca, Mg and P levels, as well as in blood morphology between experimental and control groups. These results indicate that calcitriol at 0.717, but not at 0.180 µg/kg, may induce acute damage to the liver and kidneys, without inducing calcemia. We propose that the hepatotoxic effect of calcitriol in hamster constitutes the primary cause of behavioral changes.

Year

Volume

65

Issue

3

Pages

351-358

Physical description

Dates

published
2018
received
2018-04-07
revised
2018-05-21
accepted
2018-06-06
(unknown)
2018-07-17

Contributors

author
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
author
  • Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
author
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
author
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
author
  • Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA
  • VA Medical Center, Birmingham, AL, USA

References

  • Alshahrani F, Aljohani N (2013) Vitamin D: deficiency, sufficiency and toxicity. Nutrients 5: 3605-3616. doi: 10.3390/nu5093605.
  • Battault S, Whiting S. J, Peltier S. L, Sadrin S, Gerber G, Maixent JM (2013) Vitamin D metabolism, functions and needs: From science to health claims. Eur J Nutr 52: 429-441. doi: 10.1007/s00394-012-0430-5.
  • Bikle DD (2011) Vitamin D: an ancient hormone. Exp Dermatol 20: 7-13.
  • Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21: 319-329. doi: 10.1016/j.chembiol.2013.12.016.
  • Bikle DD, Elalieh H, Welsh J, Oh D, Cleaver J, Teichert A (2013) Protective role of vitamin D signaling in skin cancer formation. J Steroid Biochem Mol Biol 136: 271-279. doi: 10.1016/j.jsbmb.2012.09.021.
  • Burns EM, Elmets CA, Yusuf N (2015) Vitamin D and skin cancer. Photochem Photobiol 91: 201-209. doi: 10.1111/php.12382.
  • Chakraborty S, Sarkar AK, Bhattacharya C, Krishnan P, Chakraborty S (2015) A nontoxic case of vitamin D toxicity. Lab Med 46: 146-149. doi: 10.1309/LM5URN1QIR7QBLXK.
  • Cheng CYS, Slominski AT, Tuckey RC (2014) Metabolism of 20-hydroxyvitamin D3 by mouse liver microsomes. J Steroid Biochem Mol Biol 144: 286-293. doi: 10.1016/j.jsbmb.2014.08.009.
  • Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96: 365-408. doi: 10.1152/physrev.00014.2015.
  • Corbee RJ, Vaandrager AB, Kik MJ, Molenaar MR, Hazewinkel HAW (2008) Cutaneous vitamin D synthesis in carnivorous species. Eur Soc Vet Comp Nutrit 96: 1.
  • DiSilvestro RA (2005) Handbook of Minerals as Nutritional Supplements. CRC Press. doi: 10.1080/10715760500510437.
  • Gorris MA, Arora H, Lieb DC, Aloi JA (2016) A word of caution when prescribing high dose vitamin D. Am J Med 130: e129-e130. doi: 10.1016/j.amjmed.2016.10.025.
  • Gowda S, Desai PB, Hull VV, Math AK, Vernekar SN, Kulkarni SS (2009) A review on laboratory liver function tests. Pan Afr Med J 3: 17. doi: 10.11604/pamj.2009.3.17.125.
  • Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7: 8199-8226. doi: 10.3390/nu7095388.
  • Gupta AK, Jamwal V, Sakul, Malhotra P (2014) Hypervitaminosis D and systemic manifestations: A comprehensive review. J Inte Med Sci Acad 27: 236-237.
  • Henry HL (2011) Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab 25: 531-541. doi: 10.1016/j.beem.2011.05.003.
  • Holick MF (2003) Vitamin D: A millenium perspective. J Cell Biochem 88: 296-307. doi: 10.1002/jcb.10338.
  • Holick MF (2007) Vitamin D Deficiency. New England Journal of Medicine 357: 266-281. doi: 10.1056/NEJMra070553.
  • Holick MF (2009) Vitamin D status: measurement interpretation and clinical application. Ann Epidemiol 19: 73-78. doi: 10.1016/j.annepidem.2007.12.001.
  • Holick MF, Chen TC, Lu Z, Sauter E (2007) Vitamin D and skin physiology: A D-lightful story. J Bone Miner Res 22 (Suppl 2): V28-V33. doi: 10.1359/jbmr.07s211.
  • Koul PA, Ahmad SH, Ahmad F, Jan RA, Shah SU, Khan UH (2011) Vitamin D toxicity in adults: A case series from an area with endemic hypovitaminosis D. Oman Med J 26: 201-204. doi: 10. 5001/omj.2011.49.
  • Krawczyński J, Osiński T (1967) Laboratoryjne metody diagnostyczne. Warszawa: PZWL (in Polish).
  • Lehmann B, Meurer M (2010) Vitamin D metabolism. Dermatol Ther 23: 2-12. doi: 10.1111/j.1529-8019.2009.01286.x.
  • Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92: 4-8. doi: 10.1016/j.pbiomolbio.2006.02.016.
  • Marcinowska-Suchowierska E, Płudowski P, Witaminą Z, Tałałaj M (2016) Vitamin D toxicity. Post N Med XXIX(10): 756-759.
  • Marins TA, Galvão T de FG, Korkes F, Malerbi DAC, Ganc AJ, Korn D, Wagner J, Guerra JC de C, Borges Filho WM, Ferracini FT, Korkes H (2014) Vitamin D intoxication: case report. Einstein (São Paulo) 12: 242-244. doi: 10.1590/S1679-45082014RC2860.
  • Marzella L, Glaumann H (1980) Increased degradation in rat liver induced by vinblastine. II. Morphologic characterization. Lab Invest 42: 18-27.
  • Mawri S, Gildeh E, Joseph N, Rabbani B, Zweig B (2017) Cardiac dysrhythmias and neurological dysregulation: manifestations of profound hypomagnesemia. Case Rep Cardiol 2017: 6250312. doi: 10.1155/2017/6250312.
  • Mazahery H, von Hurst PR (2015) Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients 7: 5111-5142. doi: 10.3390/nu7075111.
  • McCullough ML, Weinstein SJ, Freedman DM, Helzlsouer K, Flanders WD, Koenig K, Kolonel L, Laden F, Le Marchand L, Purdue M, Snyder K, Stevens VL, Stolzenberg-Solomon R, Virtamo J, Yang G, Yu K, Zheng W, Albanes D, Ashby J, Bertrand K, Cai H, Chen Y, Gallicchio L, Giovannucci E, Jacobs EJ, Hankinson SE, Hartge P, Hartmuller V, Harvey C, Hayes RB, Horst RL, Shu XO (2010) Correlates of circulating 25-hydroxyvitamin D: cohort consortium vitamin D pooling project of rarer cancers. Am J Epidemiol 172: 21-35. doi: 10.1093/aje/kwq113.
  • McPherson CW, Van Hoosier GL (1987) Laboratory hamsters. McPherson CW, Van Hoosier GL eds. Orlando: Academic Press.
  • Piotrowska A, Wierzbicka J, Ślebioda T, Woźniak M, Tuckey RC, Slominski AT, Żmijewski MA (2016) Vitamin D derivatives enhance cytotoxic effects of H2O2 or cisplatin on human keratinocytes Steroids 110: 49-61. doi: 10.1016/j.steroids.2016.04.002.
  • Piotrowska A, Wierzbicka J, Zmijewski MA (2016) Vitamin D in the skin physiology and pathology. Acta Biochim Pol 63: 17-29. doi: 10.18388/abp.2015_1104.
  • Reddy P, Edwards LR (2017) Magnesium Supplementation in vitamin D deficiency. Am J Ther. doi: 10.1097/MJT.0000000000000538.
  • Reichrath J, Lehmann B, Carlberg C, Varani J, Zouboulis CC (2007) Vitamins as hormones. Horm Metab Res 39: 71-84. doi: 10.1055/s-2007-958715.
  • Rejnmark L, Bislev LS, Cashman KD, Eiríksdottir G, Gaksch M, Grübler M, Grimnes G, Gudnason V, Lips P, Pilz S, Van Schoor NM, Kiely M, Jorde R (2017) Non-skeletal health effects of Vitamin D supplementation: A systematic review on findings from meta-Analyses summarizing trial data. PLoS ONE doi: 10.1371/journal.pone.0180512.
  • Samuel S, Sitrin MD (2008) Vitamin D's role in cell proliferation and differentiation. Nutrit Rev 66 (Suppl. 2): S116-S124. doi: 10.1111/j.1753-4887.2008.00094.x.
  • Schwalfenberg G (2007) Not enough vitamin D: health consequences for Canadians. Can Fam Physician 53: 841-854.
  • Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A, Tuckey RC (2005) The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J 272: 4080-4090. doi: 10.1111/j.1742-4658.2005.04819.x.
  • Slominski AT, Brozyna A, Jozwicki W, Tuckey RC (2015a) Vitamin D as an adjuvant in melanoma therapy. Melanoma Management 2: 1-4. doi: 10.2217/mmt.14.36.
  • Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim T-K, Janjetovic Z, Oak AS, Jozwicki W, Jetten AM, Mason RS, Elmets C, Li W, Hoffman RM, Tuckey RC (2018) On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol 177: 159-170. doi: 10.1016/j.jsbmb.2017.06.013.
  • Slominski AT, Brożyna AA, Zmijewski MA, Jóźwicki W, Jetten AM, Mason RS, Tuckey RC, Elmets CA (2017a) Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Lab Invest 97: 706-724. doi: 10.1038/labinvest.2017.3.
  • Slominski AT, Janjetovic Z, Fuller BE, Zmijewski MA, Tuckey RC, Nguyen MN, Sweatman T, Li W, Zjawiony J, Miller D, Chen TC, Lozanski G, Holick MF (2010) Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects having low or absent calcemic activity. PLoS One 5: e9907. doi: 10.1371/journal.pone.0009907.
  • Slominski AT, Kim T-K, Hobrath JV, Oak ASW, Tang EKY, Tieu EW, Li W, Tuckey RC, Jetten AM (2017b) Endogenously produced nonclassical vitamin D hydroxy-metabolites act as 'biased' agonists on VDR and inverse agonists on RORα and RORγ. J Steroid Biochem Mol Biol 173: 42-56. doi: 10.1016/j.jsbmb.2016.09.024.
  • Slominski AT, Kim T-K, Janjetovic Z, Tuckey RC, Bieniek R, Yue J, Li W, Chen J, Nguyen MN, Tang EKY, Miller D, Chen TC, Holick M (2011) 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am J Physiol-Cell Physiol 300: C526-C541. doi: 10.1152/ajpcell.00203.2010.
  • Slominski AT, Kim T-K, Li W, Postlethwaite A, Tieu EW, Tang EKY, Tuckey RC (2015b) Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep 5: 14875. doi: 10.1038/srep14875.
  • Slominski AT, Kim T-K, Shehabi HZ, Semak I, Tang EKY, Nguyen MN, Benson HAE, Korik E, Janjetovic Z, Chen J, Yates CR, Postlethwaite A, Li W, Tuckey R. C (2012) In vivo evidence for a novel pathway of vitamin D 3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J 26: 3901-3915. doi: 10.1096/fj.12-208975.
  • Slominski AT, Kim T-K, Takeda Y, Janjetovic Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey RC, Jetten AM (2014) RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20 23-dihydroxyvitamin D. FASEB J 28: 2775-2789. doi: 10.1096/fj.13-242040.
  • Slominski AT, Li W, Kim T-KK, Semak I, Wang J, Zjawiony JK, Tuckey RC (2015c) Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 151: 25-37. doi: 10.1016/j.jsbmb.2014.11.010.
  • Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, Zjawiony J, Tuckey RC (2014) Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem 14: 77-96. doi: 10.1016/j.immuni.2010.12.017.Two-stage.
  • Sowah D, Fan X, Dennett L, Hagtvedt R, Straube S (2017) Vitamin D levels and deficiency with different occupations: a systematic review. BMC Public Health 17: 519. doi: 10.1186/s12889-017-4436-z.
  • Suckow M, Stevens K, Wilson R (2012) The Laboratory Rabbit Guinea Pig Hamster and Other Rodents. American College of Laboratory Animal Medicine. 1st edn. Suckow M, Stevens K, Wilson R eds. doi: 10.1016/B978-0-12-380920-9.00001-8.
  • Thacher TD, Clarke BL (2011) Vitamin D insufficiency. Mayo Clin Proc 86: 50-60. doi: 10.4065/mcp.2010.0567.
  • Venkatram S, Chilimuri S, Adrish M, Salako A, Patel M, Diaz-Fuentes G (2011) Vitamin D deficiency is associated with mortality in the medical intensive care unit. Crit Care 15: R292. doi: 10.1186/cc10585.
  • Virmani A (2014) Vitamin D toxicity. Indian Pediatrics 51: 63. doi: 10.1007/s13312-014-0315-1.
  • Wacker M, Holick MF (2013) Sunlight and Vitamin D. Dermatoendocrinol 5: 51-108. doi: 10.4161/derm.24494.
  • Wang J, Slominski A, Tuckey RC, Janjetovic Z, Kulkarni A, Chen J, Postlethwaite AE, Miller D, Li W (2012) 20-hydroxyvitamin D3 inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Res 32: 739-746.
  • Weiss D, Wardrop J (2010) Schalm's Veterinary Hematology. 6th edn. Wardrop J, Weiss D eds. Wiley-Blackwell.
  • Wierzbicka J, Piotrowska A, Zmijewski MA (2014) The renaissance of vitamin D. Acta Biochim Pol 61: 679-686.
  • Yeh MW, Ituarte PHG, Zhou HC, Nishimoto S, Amy Liu I-L, Harari A, Haigh PI, Adams AL (2013) Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J Clin Endocrinol Metab 98: 1122-1129. doi: 10.1210/jc.2012-4022.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv65p351kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.