Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 65 | 3 | 341-349

Article title

Crosstalk between the TGF-β and WNT signalling pathways during cardiac fibrogenesis

Content

Title variants

Languages of publication

EN

Abstracts

EN
Cardiac fibrosis is referred to as an excessive accumulation of stromal cells and extracellular matrix proteins in the myocardium. Progressive fibrosis causes stiffening of the cardiac tissue and affects conduction of electrical impulses, leading to heart failures in a broad range of cardiac conditions. At the cellular level, activation of the cardiac stromal cells and myofibroblast formation are considered as hallmarks of fibrogenesis. At the molecular level, transforming growth factor β (TGF-β) is traditionally considered as a master regulator of the profibrotic processes. More recently, the WNT signalling pathway has also been found to be implicated in the development of myocardial fibrosis. In this review, we summarize current knowledge on the involvement of TGF-β and WNT downstream molecular pathways to cardiac fibrogenesis and describe a crosstalk between these two profibrotic pathways. TGF-β and WNT ligands bind to different receptors and trigger various outputs. However, a growing body of evidence points to cross-regulation between these two pathways. It has been recognized that in cardiac pathologies TGF-β activates WNT/β-catenin signalling, which in turn stabilizes the TGF-β/Smad response. Furthermore both, the non-canonical TGF-β and non-canonical WNT signalling pathways, activate the same mitogen-activated protein kinases (MAPKs): the extracellular signal-regulated kinase (Erk), the c-Jun N-terminal kinases (JNKs) and p38. The crosstalk between TGF-β and WNT pathways seems to play an essential role in switching on the genetic machinery initiating profibrotic changes in the heart. Better understanding of these mechanisms will open new opportunities for development of targeted therapeutic approaches against cardiac fibrosis in the future.

Year

Volume

65

Issue

3

Pages

341-349

Physical description

Dates

published
2018
received
2018-04-12
revised
2018-06-09
accepted
2018-06-22
(unknown)
2018-07-24

Contributors

author
  • Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
  • Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
  • Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
  • Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zürich, Switzerland

References

  • Abraityte A, Vinge LE, Askevold ET, Lekva T, Michelsen AE, Ranheim T, Alfsnes K, Fiane A, Aakhus S, Lunde IG, Dahl CP, Aukrust P, Christensen G, Gullestad L, Yndestad A, Ueland T (2017) WNT5a is elevated in heart failure and affects cardiac fibroblast function. J Mol Med 95: 767-777. doi: 10.1007/s00109-017-1529-1.
  • Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH (2012) Activation of canonical WNT signalling is required for TGF-β-mediated fibrosis. Nat Commun 3: 735. doi: 10.1038/ncomms1734.
  • Barandon L, Casassus F, Leroux L, Moreau C, Allières C, Daniel Lamazière JM, Dufourcq P, Couffinhal T, Duplàa C (2011) Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31: e80-e87. doi: 10.1161/ATVBAHA.111.232280.
  • Bergmann MW (2010) WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107: 1198-1208. doi: 10.1161/CIRCRESAHA.110.223768.
  • Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-β signaling in fibrosis. Growth Factors 29: 196-202. doi: 10.3109/08977194.2011.595714.
  • Biesemann N, Mendler L, Kostin S, Wietelmann A, Borchardt T, Braun T (2015) Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res 361: 779-787. doi: 10.1007/s00441-015-2139-2.
  • Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, Eriksson U, Kania G (2017) Transforming growth factor-β-dependent WNT secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J 38: 1413-1425. doi: 10.1093/eurheartj/ehw116.
  • Branton MH, Kopp JB (1999) TGF-β and fibrosis. Microbes Infect 1: 1349-1365. doi: 10.1016/S1286-4579(99)00250-6.
  • Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang X-F, Frangogiannis NG (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116: 2127-2138. doi: 10.1161/CIRCULATIONAHA.107.704197.
  • Carthy JM, Garmaroudi FS, Luo Z, McManus BM (2011) WNT3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner. PLoS One 6: e19809. doi: 10.1371/journal.pone.0019809.
  • Chatzifrangkeskou M, Le Dour C, Wu W, Morrow JP, Joseph LC, Beuvin M, Sera F, Homma S, Vignier N, Mougenot N, Bonne G, Lipson KE, Worman HJ, Muchir A (2016) ERK1/2 directly acts on CTGF/CCN2 expression to mediate myocardial fibrosis in cardiomyopathy caused by mutations in the lamin A/C gene. Hum Mol Genet 25: 2220-2233. doi: 10.1093/hmg/ddw090.
  • Choudhary R, Palm-Leis A, Scott RC, Guleria RS, Rachut E, Baker KM, Pan J (2008) All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am J Physiol Heart Circ Physiol 294: H633-H644. doi: 10.1152/ajpheart.01301.2007.
  • Colston JT, de la Rosa SD, Koehler M, Gonzales K, Mestril R, Freeman GL, Bailey SR, Chandrasekar B (2007) WNT-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol 293: H1839-H1846. doi: 10.1152/ajpheart.00428.2007.
  • Cruciat CM, Niehrs C (2013) Secreted and transmembrane WNT inhibitors and activators. Cold Spring Harb Perspect Biol 5: a015081. doi: 10.1101/cshperspect.a015081.
  • Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin DJ (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23: 705-715. doi: 10.1016/j.devcel.2012.08.017.
  • Dooley S, ten Dijke P (2012) TGF-β in progression of liver disease. Cell Tissue Res 347: 245-256. doi: 10.1007/s00441-011-1246-y.
  • Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M, Deb A (2012) WNT1/β-catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31: 429-442. doi: 10.1038/emboj.2011.418.
  • Fan J, Qiu L, Shu H, Ma B, Hagenmueller M, Riffel JH, Meryer S, Zhang M, Hardt SE, Wang L, Zhou N, Qiu H, Zhou N (2018) Recombinant frizzled1 protein attenuated cardiac hypertrophy after myocardial infarction via the canonical WNT signaling pathway. Oncotarget 9: 3069-3080. doi: 10.18632/oncotarget.23149.
  • Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21: 659-693. doi: 10.1146/annurev.cellbio.21.022404.142018.
  • Fix C, Bingham K, Carver W (2011) Effects of interleukin-18 on cardiac fibroblast function and gene expression. Cytokine 53: 19-28. doi: 10.1016/j.cyto.2010.10.002.
  • Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103: 485-492. doi: 10.1007/s00395-008-0739-7.
  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200: 500-503. doi: 10.1002/path.1427.
  • Garriock RJ, Warkman AS, Meadows SM, D'Agostino S, Krieg PA (2007) Census of vertebrate WNT genes: isolation and developmental expression of Xenopus WNT2, WNT3, WNT9a, WNT9b, WNT10a, and WNT16. Dev Dyn 236: 1249-1258. doi: 10.1002/dvdy.21156.
  • Germano D, Blyszczuk P, Valaperti A, Kania G, Dirnhofer S, Landmesser U, Lüscher TF, Hunziker L, Zulewski H, Eriksson U (2009) Prominin-1/CD133+ Lung Epithelial Progenitors Protect from Bleomycin-induced Pulmonary Fibrosis. Am J Respir Crit Care Med 179: 939-949. doi: 10.1164/rccm.200809-1390OC.
  • Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW, Vaughan DE (2010) Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: Involvement of constitutive transforming growth factor-β signaling and endothelial-to-mesenchymal transition. Circulation 122: 1200-1209. doi: 10.1161/CIRCULATIONAHA.110.955245.
  • Hahn JY, Cho HJ, Bae J-W, Yuk HS, Kim K, Park KW, Koo BK, Chae IH, Shin CS, Oh BH, Choi YS, Park YB, Kim HS (2006) β-Catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 281: 30979-30989. doi: 10.1074/jbc.M603916200.
  • Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, Xuan W, Liao W, Bin J, Huang X, Kitakaze M, Liao Y (2016) FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget 7: 64649-64664. doi: 10.18632/oncotarget.11623.
  • Hao J, Ju H, Zhao S, Junaid A, Fleur TS, Dixon IM (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31: 667-678. doi: 10.1006/jmcc.1998.0902.
  • Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12: 186-197.
  • Haudek SB, Gupta D, Dewald O, Schwartz RJ, Wei L, Trial J, Entman ML (2009) Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovasc Res 83: 511-518. doi: 10.1093/cvr/cvp135.
  • Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 103: 18284-18289. doi: 10.1073/pnas.0608799103.
  • Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89: 1165-1173.
  • He W, Tan R, Dai C, Li Y, Wang D, Hao S, Kahn M, Liu Y (2010) Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/β-catenin signaling. J Biol Chem 285: 24665-24675. doi: 10.1074/jbc.M109.091256.
  • He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, Pratt RE, Dzau VJ (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fi brosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci USA 107: 21110-21115. doi: 10.1073/pnas.1004708107.
  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9: 690-701. doi: 10.1038/nrm2476.
  • Herr P, Hausmann G, Basler K (2012) WNT secretion and signalling in human disease. Trends Mol Med 18: 483-493. doi: 10.1016/j.molmed.2012.06.008.
  • Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nübe O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5: 1135-1142. doi: 10.1038/13459.
  • Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP, Tse HF, Lan HY (2010) Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 55: 1165-1171. doi: 10.1161/HYPERTENSIONAHA.109.147611.
  • Hubchak SC, Sparks EE, Hayashida T, Schnaper HW (2009) Rac1 promotes TGF-β-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism. Am J Physiol Renal Physiol 297: F1316-1323. doi: 10.1152/ajprenal.00345.2009.
  • Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Tateshita A (2004) Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 64: 526-535. doi: 10.1016/j.cardiores.2004.07.017.
  • Jin YR, Yoon JK (2012) The R-spondin family of proteins: emerging regulators of WNT signaling. Int J Biochem Cell Biol 44: 2278-2287. doi: 10.1016/j.biocel.2012.09.006.
  • Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y, Feizi T, Bineva G, O'Reilly N, Snijders AP, Jones EY, Vincent J-P (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519: 187-192. doi: 10.1038/nature14259.
  • Kania G, Blyszczuk P, Stein S, Valaperti A, Germano D, Dirnhofer S, Hunziker L, Matter CM, Eriksson U (2009) Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor β-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ Res 105: 462–470. doi: 10.1161/CIRCRESAHA.109.196287.
  • Kania G, Blyszczuk P, Valaperti A, Dieterle T, Leimenstoll B, Dirnhofer S, Zulewski H, Eriksson U (2008) Prominin-1+/CD133+ bone marrow-derived heart-resident cells suppress experimental autoimmune myocarditis. Cardiovasc Res 80: 236-245. doi: 10.1093/cvr/cvn190.
  • Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127: 3770-3783. doi: 10.1172/JCI94753.
  • Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu T-C, Huang G, Basson CT, Kispert A, Greenspan DS, Sato TN (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11: 46-55. doi: 10.1038/ncb1811.
  • Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA (2011) Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J Clin Invest 121: 2301-2312. doi: 10.1172/JCI44824.
  • Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71: 549-574. doi: 10.1007/s00018-013-1349-6.
  • Kurose H, Mangmool S (2016) Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res 39: 1100-1113. doi: 10.1007/s12272-016-0809-6.
  • Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106: 130-135.
  • Laeremans H, Hackeng TM, van Zandvoort MAMJ, Thijssen VLJL, Janssen BJA, Ottenheijm HCJ, Smits JFM, Blankesteijn WM (2011) Blocking of frizzled signaling with a homologous peptide fragment of WNT3a/WNT5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124: 1626-1635. doi: 10.1161/CIRCULATIONAHA.110.976969.
  • Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM (2010) WNT/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res 87: 514-523. doi: 10.1093/cvr/cvq067.
  • Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y, Yu D, Tsai EJ, Woodgett J, Gao E, Force T (2014) Cardiac Fibroblast Glycogen Synthase Kinase-3 Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart. Circulation 130: 419-430. doi: 10.1161/CIRCULATIONAHA.113.008364.
  • Lam AP, Flozak AS, Russell S, Wei J, Jain M, Mutlu GM, Budinger GR, Feghali-Bostwick CA, Varga J, Gottardi CJ (2011) Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 45: 915-922. doi: 10.1165/rcmb.2010-0113OC.
  • Leask A (2007) TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74: 207-212. doi: 10.1016/j.cardiores.2006.07.012.
  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R (2007) TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26: 3957-3967. doi: 10.1038/sj.emboj.7601818.
  • Li CY, Zhou Q, Yang LC, Chen YH, Hou JW, Guo K, Wang YP, Li YG (2016) Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Basic Res Cardiol 111: 19. doi: 10.1007/s00395-016-0536-7.
  • Li L, Zhao Q, Kong W (2018) Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 69-69: 490–506. doi: 10.1016/j.matbio.2018.01.013.
  • Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle. Am J Pathol 164: 1007-1019. doi: 10.1016/S0002-9440(10)63188-4.
  • Li Y, Li Z, Zhang C, Li P, Wu Y, Wang C, Bond Lau W, Ma XL, Du J (2017) Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling. Circulation 135: 2041-2057. doi: 10.1161/CIRCULATIONAHA.116.024599.
  • Lin H, Angeli M, Chung KJ, Ejimadu C, Rosa AR, Lee T (2016) sFRP2 activates WNT/β-catenin signaling in cardiac fibroblasts: differential roles in cell growth, energy metabolism, and extracellular matrix remodeling. Am J Physiol Cell Physiol 311: C710-C719. doi: 10.1152/ajpcell.00137.2016.
  • Lu GQ, Wu ZB, Chu XY, Bi ZG, Fan WX (2016) An investigation of crosstalk between Wnt/β-catenin and transforming growth factor-β signaling in androgenetic alopecia. Medicine (Baltimore) 95: e4297. doi: 10.1097/MD.0000000000004297.
  • Ma ZG, Yuan YP, Zhang X, Xu SC, Wang SS, Tang QZ (2017) Piperine Attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways. EBioMedicine 18: 179-187. doi: 10.1016/j.ebiom.2017.03.021.
  • Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE (2010) WNT Signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55: 939-945. doi: 10.1161/HYPERTENSIONAHA.109.141127.
  • Matsumoto-Ida M, Takimoto Y, Aoyama T, Akao M, Takeda T, Kita T (2006) Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 290: H709-H715. doi: 10.1152/ajpheart.00186.2005.
  • Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, Sawa Y, Jakt LM, Mori H, Kawamata S (2010) Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng Part A 16: 3329-3341. doi: 10.1089/ten.TEA.2009.0739.
  • Mehra A, Wrana JL (2002) TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol 80: 605-622.
  • Meng XM, Tang PM, Li J, Lan HY (2015) TGF-β/Smad signaling in renal fibrosis. Front Physiol 6: 82. doi: 10.3389/fphys.2015.00082.
  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12: 325-338. doi: 10.1038/nrneph.2016.48.
  • Mizutani M, Wu JC, Nusse R (2015) Fibrosis of the neonatal mouse heart after cryoinjury is accompanied by WNT signaling activation and epicardial-to-mesenchymal transition. J Am Heart Assoc 5: e002457. doi: 10.1161/JAHA.115.002457.
  • Molkentin JD, Bugg D, Ghearing N, Dorn LE, Kim P, Sargent MA, Gunaje J, Otsu K, Davis JM (2017) Fibroblast-specific genetic manipulation of p38 MAPK in vivo reveals its central regulatory role in fibrosis. Circulation 136: 549-561. doi: 10.1161/CIRCULATIONAHA.116.026238.
  • Moon RT, Kohn AD, Ferrari GV De, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691-701. doi: 10.1038/nrg1427.
  • Moriwaki H, Stempien-Otero A, Kremen M, Cozen AE, Dichek DA (2004) Overexpression of urokinase by macrophages or deficiency of plasminogen activator inhibitor type 1 causes cardiac fibrosis in mice. Circ Res 95: 637-644. doi: 10.1161/01.RES.0000141427.61023.f4.
  • Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, Irie-Sasaki J, Gidrewicz D, Rybin VO, Wada T, Steinberg SF, Backx PH, Penninger JM (2003) Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation 108: 2147-2152. doi: 10.1161/01.CIR.0000091403.62293.2B.
  • Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37: 449-471. doi: 10.1016/j.yjmcc.2004.05.015.
  • Paw M, Borek I, Wnuk D, Ryszawy D, Piwowarczyk K, Kmiotek K, Wójcik-Pszczoła KA, Pierzchalska M, Madeja Z, Sanak M, Błyszczuk P, Michalik M, Czyż J (2017) Connexin43 controls the myofibroblastic differentiation of bronchial fibroblasts from patients with asthma. Am J Respir Cell Mol Biol 57: 100-110. doi: 10.1165/rcmb.2015-0255OC.
  • Peterson RT, Schreiber SL (1998) Translation control: connecting mitogens and the ribosome. Curr Biol 8: R248-R250. doi: 10.1016/S0960-9822(98)70152-6.
  • Petrich BG, Wang Y (2004) Stress-activated MAP kinases in cardiac remodeling and heart failure: New insights from transgenic studies. Trends Cardiovasc Med 14: 50-55. doi: 10.1016/j.tcm.2003.11.002.
  • Piersma B, Bank RA, Boersema M (2015) Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med (Lausanne) 2: 59. doi: 10.3389/fmed.2015.00059.
  • Plikus MV, Gay DL, Treffeisen E, Wang A, Supapannachart RJ, Cotsarelis G (2012) Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol 23: 946-953, doi: 10.1016/j.semcdb.2012.10.001.
  • Rao TP, Kühl M (2010) An updated overview on wnt signaling pathways: A prelude for more. Circ Res 106: 1798-1806. doi: 10.1161/CIRCRESAHA.110.219840.
  • Rikitake Y, Oyama N, Wang CY, Noma K, Satoh M, Kim HH, Liao JK (2005) Decreased Perivascular Fibrosis but Not Cardiac Hypertrophy in ROCK1+/− Haploinsufficient Mice. Circulation 112: 2959-2965. doi: 10.1161/CIRCULATIONAHA.105.584623.
  • Sarrazy V, Koehler A, Chow ML, Zimina E, Li CX, Kato H, Caldarone CA, Hinz B (2014) Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc Res 102: 407-417. doi: 10.1093/cvr/cvu053.
  • Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, DeLaughter DM, Ng B, Patone G, Chow K, Khin E, Tan J, Chothani SP, Ye L, Rackham OJL, Ko NSJ, Sahib NE, Pua CJ, Zhen NTG, Xie C, Wang M, Maatz H, Lim S, Saar K, Blachut S, Petretto E, Schmidt S, Putoczki T, Guimarães-Camboa N, Wakimoto H, van Heesch S, Sigmundsson K, Lim SL, Soon JL, Chao VTT, Chua YL, Tan TE, Evans SM, Loh YJ, Jamal MH, Ong KK, Chua KC, Ong BH, Chakaramakkil MJ, Seidman JG, Seidman CE, Hubner N, Sin KYK, Cook SA (2017) IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552: 110-115. doi: 10.1038/nature24676.
  • Shi J, Zhang Y-W, Yang Y, Zhang L, Wei L (2010) ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. J Mol Cell Cardiol 49: 819-828. doi: 10.1016/j.yjmcc.2010.08.008.
  • Shimizu T, Liao JK (2016) Rho Kinases and Cardiac Remodeling. Circ J 80: 1491-1498. doi: 10.1253/circj.CJ-16-0433.
  • Shyu KG, Wang BW, Chen WJ, Kuan P, Hung CR (2010) Mechanism of the inhibitory effect of atorvastatin on endoglin expression induced by transforming growth factor-β1 in cultured cardiac fibroblasts. Eur J Heart Fail 12: 219-226. doi: 10.1093/eurjhf/hfq011.
  • Si Y, Bai J, Wu J, Li Q, Mo Y, Fang R, Lai W (2017) LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway. Mol Med Rep 17: 1191-1197. doi: 10.3892/mmr.2017.7944.
  • Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, Bodine P, Schermuly RT, George I, Schulze PC, D'Armiento JM (2015) Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail 8: 362-372. doi: 10.1161/CIRCHEARTFAILURE.114.001274.
  • Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Robert D, Richardson JA, Dimaio JM, Sadek H, Olson EN (2010) Myocardin-related transcription factor-A controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 107: 294-304. doi: 10.1161/CIRCRESAHA.110.223172.
  • Sun F, Duan W, Zhang Y, Zhang L, Qile M, Liu Z, Qiu F, Zhao D, Lu Y, Chu W (2015) Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-β receptor III expression. Br J Pharmacol 172: 3779-3792. doi: 10.1111/bph.13166.
  • Sundaresan NR, Bindu S, Pillai V, Saman S, Pan Y, Huang JY, Gupta M, Nagalingam RS, Wolfgether D, Verdin E, Gupta MP (2016) SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol Cell Biol 36: 678-692. doi: 10.1128/MCB.00586-15.
  • Surmann-Schmitt C, Widmann N, Dietz U, Saeger B, Eitzinger N, Nakamura Y, Rattel M, Latham R, Hartmann C, von der Mark H, Schett G, von der Mark K, Stock M (2009) Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis. J Cell Sci 122: 3627-3637. doi: 10.1242/jcs.048926.
  • Tao H, Yang JJ, Shi KH, Li J (2016) WNT signaling pathway in cardiac fibrosis: New insights and directions. Metabolism 65: 30-40. doi: 10.1016/j.metabol.2015.10.013.
  • Tatler AL, Jenkins G (2012) TGF-β Activation and Lung Fibrosis. Proc Am Thorac Soc 9: 130-136. doi: 10.1513/pats.201201-003AW.
  • Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG (2010) Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest 120: 3520-3529. doi: 10.1172/JCI42028.
  • Tran DQ (2012) TGF-β: the sword, the wand, and the shield of FOXP3+regulatory T cells. J Mol Cell Biol 4: 29-37. doi: 10.1093/jmcb/mjr033.
  • Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118: 1021-1040. doi: 10.1161/CIRCRESAHA.115.306565.
  • Tsou PS, Haak AJ, Khanna D, Neubig RR (2014) Cellular Mechanisms of Tissue Fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 307: C2-C13. doi: 10.1152/ajpcell.00060.2014.
  • Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD (2011) Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 55: 90-97. doi: 10.1016/j.cyto.2011.03.024.
  • Wang B, Hao J, Jones SC, Yee MS, Roth JC, Dixon IMC (2002) Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 282: H1685-H1696. doi: 10.1152/ajpheart.00266.2001.
  • Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ, Wei ZH, Kang LN, Xu B (2016) Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord 16: 5. doi: 10.1186/s12872-015-0169-z.
  • Xiang FL, Fang M, Yutzey KE (2017) Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun 8: 712. doi: 10.1038/s41467-017-00840-w.
  • Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z, Gao J (2017) Activation of WNT/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med 21: 1545-1554. doi: 10.1111/jcmm.13085.
  • Yan W, Wang P, Zhao CX, Tang J, Xiao X, Wang DW (2009) Decorin gene delivery inhibits cardiac fibrosis in spontaneously hypertensive rats by modulation of transforming growth factor-beta/Smad and p38 mitogen-activated protein kinase signaling pathways. Hum Gene Ther 20: 1190-1200. doi: 10.1089/hum.2008.204.
  • Ye B, Ge Y, Perens G, Hong L, Xu H, Fishbein MC, Li F (2013) Canonical WNT/β-catenin signaling in epicardial fibrosis of failed pediatric heart allografts with diastolic dysfunction. Cardiovasc Pathol 22: 54-57. doi: 10.1016/j.carpath.2012.03.004.
  • Yeh CC, Li H, Malhotra D, Turcato S, Nicholas S, Tu R, Zhu BQ, Cha J, Swigart PM, Myagmar B, Baker AJ, Simpson PC, Mann MJ (2010) Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-mi remodeling in the mouse. J Cell Biochem 109: 1185-1191. doi: 10.1002/jcb.22498.
  • Yoshimura A, Muto G (2011) TGF-β Function in Immune Suppression. Curr Top Microbiol Immunol 350: 127-147. doi: 10.1007/82_2010_87.
  • Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis Nat Med 13: 952-961. doi: 10.1038/nm1613.
  • Zhai CG, Xu YY, Tie YY, Zhang Y, Chen WQ, Ji XP, Mao Y, Qiao L, Cheng J, Xu QB, Zhang C (2018) DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways. J Mol Cell Cardiol 114: 243-252. doi: 10.1016/j.yjmcc.2017.11.018.
  • Zhan M, Kanwar YS (2014) Hierarchy of molecules in TGF-β1 signaling relevant to myofibroblast activation and renal fibrosis. Am J Physiol Renal Physiol 307: F385-F387. doi: 10.1152/ajprenal.00338.2014.
  • Zhang X, MacDonald BT, Gao H, Shamashkin M, Coyle AJ, Martinez R V., He X (2016) Characterization of Tiki, a New Family of Wnt-specific Metalloproteases. J Biol Chem 291: 2435-2443. doi: 10.1074/jbc.M115.677807.
  • Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ, Wei L (2006) Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J 20: 916-925. doi: 10.1096/fj.05-5129com.
  • Zhang Y, Liu Y, Zhu XH, Zhang XD, Jiang DS, Bian ZY, Zhang XF, Chen K, Wei X, Gao L, Zhu LH, Yang Q, Fan GC, Lau WB, Ma X, Li H (2014) Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res 102: 35-45. doi: 10.1093/cvr/cvu004.
  • Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19: 128-139. doi: 10.1038/cr.2008.328.
  • Zhou B, Pu WT (2011) Epicardial epithelial-to-mesenchymal transition in injured heart. J Cell Mol Med 15: 2781-2783. doi: 10.1111/j.1582-4934.2011.01450.x.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv65p341kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.