Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 65 | 2 | 185-191

Article title

The interaction of new oxicam derivatives with lipid bilayers as measured by calorimetry and fluorescence spectroscopy

Content

Title variants

Languages of publication

EN

Abstracts

EN
The purpose of the present work was to assess the ability of five new oxicam analogues to interact with the lipid bilayers. To characterize the interaction of newly synthesized NSAIDs (non-steroidal anti-inflammatory drugs) analogues with DPPC lipid bilayers the two following techniques were applied - differential scanning calorimetry (DSC) and fluorescence spectroscopy. The results obtained by these experimental approaches show that new oxicams analogues interact with the lipid model membranes under consideration. As demonstrated both in calorimetric and spectroscopic studies, the greatest influence on the thermotropic properties of the lipid membrane and on the quenching of fluorescence of Laurdan and Prodan was exerted by a derivative named PR47 containing in its structure a two-carbon aliphatic linker with a carbonyl group, as well as bromine and trifluoromethyl substituents.

Year

Volume

65

Issue

2

Pages

185-191

Physical description

Dates

published
2018
received
2018-02-02
revised
2018-04-13
accepted
2018-04-17
(unknown)
2018-05-22

Contributors

  • Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
  • Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
  • Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
  • Department of Biophysics, Wroclaw Medical University, Wrocław, Poland

References

  • Bagatolli LA, Parasassi T, Fidelio GD, Gratton E (1999) A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Photochem Photobiol 70: 557-564.
  • Chakraborty H, Chakraborty PK, Raha S, Mandal PC, Sarkar M (2007) Interaction of piroxicam with mitochondrial membrane and cytochrome c. Biochim Biophys Acta 1768: 1138-1145.doi: 10.1016/j.bbamem.2007.01.004.
  • de Groot DJ, de Vries EG, Groen HJ, de Jong S (2007) Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. Crit Rev Oncol Hematol 61: 52-69.doi: 10.1016/j.critrevonc.2006.07.001.
  • Dixon DA, Blanco FF, Bruno A, Patrignani P (2013) Mechanistic aspects of cox-2 expression in colorectal neoplasia. Recent Results Cancer Res 191: 7-37.doi: 10.1007/978-3-642-30331-9_2.
  • Ghosh N, Chaki R, Mandal V, Mandal SC (2010) COX-2 as a target for cancer chemotherapy. Pharmacol Rep 62: 233-244.
  • Jain KJ, Wu NM (1977) Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: phase transition in lipid bilayer. J Membrane Biol 34: 157-201
  • Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74: 1984-1993.doi: 10.1016/S0006-3495(98)77905-6.
  • Krzyżak E, Szczęśniak-Sięga B, Malinka W (2014) Synthesis and thermal behaviour of new benzo-1,2-thiazine long-chain aryl-piperazine derivatives. J Thermal Analysis Calorimetry 115: 793-802.doi: 10.1007/s10973-013-3185-1
  • Kyrikou I, Hadjikakou SK, Kovala-Demertzi D, Viras K, Mavromoustakos T (2004) Effects of non-steroid anti-inflammatory drugs in membrane bilayers. Chem Phys Lipids 132: 157-169.doi: 10.1016/j.chemphyslip.2004.06.005.
  • Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. 3rd edn, Springer. Heidelberg, New York. ISBN 978-0-387-46312-4
  • Lichtenberger LM, Zhou Y, Jayaraman V, Doyen JR, O'Neil RG, Dial EJ, Volk DE, Gorenstein DG, Boggara MB, Krishnamoorti R (2012) Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphatidylcholine. Biochim Biophys Acta 1821: 994-1002.doi: 10.1016/j.bbalip.2012.04.002.
  • Lúcio M, Lima JL, Reis S (2010) Drug-membrane interactions: significance for medicinal chemistry. Curr Med Chem 17: 1795-1809.doi: 10.2174/092986710791111233.
  • Maniewska J, Szczęśniak-Sięga B, Poła A, Środa-Pomianek K, Malinka W, Michalak K (2014) The interaction of new piroxicam analogues with lipid bilayers - a calorimetric and fluorescence spectroscopic study. Acta Pol Pharm 71: 1004–1012.
  • Mbonye UR, Wada M, Rieke CJ, Tang HY, Dewitt DL, Smith WL (2006) The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J Biol Chem 281: 35770-35778.doi: 10.1074/jbc.M608281200.
  • Nunes C, Brezesinski G, Pereira-Leite C, Lima JL, Reis S, Lúcio M (2011) NSAIDs interactions with membranes: a biophysical approach. Langmuir 27: 10847-10858.doi: 10.1021/la201600y.
  • Park JH, McMillan DC, Horgan PG, Roxburgh CS (2014) The impact of anti-inflammatory agents on the outcome of patients with colorectal cancer. Cancer Treat Rev 40: 68-77.doi: 10.1016/j. ctrv.2013.05.006.
  • Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 6: 1264-1275.doi: 10.1021/mp9000662.
  • Peetla C, Vijayaraghavalu S, Labhasetwar V (2013) Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles Adv Drug Deliv Rev 65: 1686-1698doi: 10.1016/j.addr.2013.09.004.
  • Pereira-Leite C, Nunes C, Reis S (2013) Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res 52: 571-584.doi: 10.1016/j.plipres.2013.08.003.
  • Rizzo MT (2011) Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 412: 671-687.doi: 10.1016/j.cca.2010.12.026.
  • Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O (2009) Drug interactions with lipid membranes. Chem Soc Rev 38: 2509-2519.doi: 10.1039/b813853m.
  • Środa-Pomianek K, Wesołowska O, Szczęśniak-Sięga B, Puła B, Dzięgiel P, Maniewska J, Palko-Łabuz A, Michalak K (2015) Effect of new oxicam derivatives on efflux pumps overexpressed in resistant a human colorectal adenocarcinoma cell line. Anticancer Res 35: 2835-2840.
  • Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10: 181-193.doi: 10.1038/nrc2809.
  • Wang D, Dubois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29: 781-788.doi: 10.1038/onc.2009.421.
  • Zhou Y, Hancock JF, Lichtenberger LM (2010) The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action. PLoS One 5: e8811.
  • Xu S, Rouzer CA, Marnett LJ (2014) Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life 66: 803-811.doi: 10.1002/iub.1334.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv65p185kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.