PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 65 | 1 | 101-109
Article title

Targeting the hypoxia pathway in malignant plasma cells by using 17-allylamino-17-demethoxygeldanamycin

Content
Title variants
Languages of publication
EN
Abstracts
EN
Multiple myeloma (MM) is characterized as a clonal expansion of malignant plasma cells in the bone marrow, which is often associated with pancytopenia and osteolytic bone disease. Interestingly, myeloma-infiltrated bone marrow is considered to be hypoxic, providing selection pressure for a developing tumour. Since HSP90 was shown to participate in stabilization of the subunit of the key transcription factor HIF-1, which controls the hypoxic response, the aim of this study was to investigate the influence of a HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), on MM cells cultured under low oxygenation conditions. We confirmed that 17-AAG inhibits hypoxic induction of the HIF-1 target genes in malignant plasma cells and demonstrate the concentration range of severe hypoxia-specific cytotoxicity. Next, we selected the malignant plasma cells under severe hypoxia/re-oxygenation culture conditions in the presence or absence of 17-AAG and subsequently, the cells which survived were further expanded and analyzed. Interestingly, we have noticed significant changes in the survival and the response to anti-MM drugs between the parental cell lines and those selected in cyclic severe hypoxia in the presence and absence of 17-AAG. Importantly, we also observed that the lack of oxygen itself, irrespectively of HIF-1 inhibition, is the main/pivotal factor driving the selection process in the experiments presented here.
Keywords
Publisher

Year
Volume
65
Issue
1
Pages
101-109
Physical description
Dates
published
2018
received
2017-08-11
revised
2017-11-28
accepted
2017-12-13
(unknown)
2018-03-15
Contributors
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
author
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
author
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
author
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
  • Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
References
  • Achison M, Hupp TR (2003) Hypoxia attenuates the p53 response to cellular damage. Oncogene 22: 3431-3440doi: 10.1038/sj.onc.1206434.
  • Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4: 349-60. doi: 10.1038/nrc1361.
  • Asosingh K, De Raeve H, de Ridder M, Storme GA, Willems A, Van Riet I, Van Camp B, Vanderkerken K (2005) Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 90: 810-817.
  • Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, Thompson B, Maiso P, Sun JD, Hart CP, Roccaro AM, Sacco A, Ngo HT, Lin CP, Kung AL, Carrasco RD, Vanderkerken K, Ghobrial IM (2012) Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119: 5782-5794. doi: 10.1182/blood-2011-09-380410.
  • Bianchi G, Ghobrial IM (2014) Biological and clinical implications of clonal heterogeneity and clonal evolution in multiple myeloma. Curr Cancer Ther Rev 10: 70-79. doi: 10.2174/157339471002141124121404.
  • Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, O' Meara S, Butler AP, Teague JW, Mudie L, Anderson E, Rashid N, Tai YT, Shammas MA, Sperling AS, Fulciniti M, Richardson PG, Parmigiani G, Magrangeas F, Minvielle S, Moreau P, Attal M, Facon T, Futreal PA, Anderson KC, Campbell PJ, Munshi NC (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5: 2997. doi: 10.1038/ncomms3997.
  • Borsi E, Perrone G, Terragna C, Martello M, Dico AF, Solaini G, Baracca A, Sgarbi G, Pasquinelli G, Valente S, Zamagni E, Tacchetti P, Martinelli G, Cavo M (2014) Hypoxia inducible factor-1 alpha as a therapeutic target in multiple myeloma. Oncotarget 5: 1779-1792. doi: 10.18632/oncotarget.1736.
  • Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15: 1239-1253. doi: 10.1111/j.1582-4934.2011.01258.x.
  • Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66: 9009-9016. doi: 10.1158/0008-5472.CAN-06-0101.
  • Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, Lazzaretti M, Abeltino M, Ippolito L, Neri A, Ribatti D, Rizzoli V, Martella E, Giuliani N (2010) Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 24: 1967-1970. doi: 10.1038/leu.2010.193.
  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15: 232-239. doi: 10.1016/j.ccr.2009.01.021.
  • Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57: 727-741. doi: org/10.1016/S0006-2952(98)00307-4.
  • Giatromanolaki A, Bai M, Margaritis D, Bourantas KL, Koukourakis MI, Sivridis E, Gatter KC (2010) Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 30: 2831-2836.
  • Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S (2011) Angiogenesis and multiple myeloma. Cancer Microenviron 4: 325-337. doi: 10.1007/s12307-011-0072-9.
  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88-91.
  • Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biology 6: 524-551. doi: org/10.1016/j.redox.2015.08.020.
  • Hammond EM, Asselin MC, Forster D, O'Connor JP, Senra JM, Williams KJ (2014) The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 26: 277-288. doi: 10.1016/j.clon.2014.02.002.
  • Harris AL (2002) Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38-47. doi: 10.1038/nrc704.
  • Harrison JS, Rameshwar P, Chang V, Bandari P (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99: 394.
  • Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61: 3071-3076.
  • Hu J, Van Valckenborgh E, Menu E, De Bruyne E, Vanderkerken K (2012) Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. Dis Model Mech 5: 763-771. doi: 10.1242/dmm.008961.
  • Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent Hypoxia-inducible factor-1_-degradative pathway. J Biol Chem 277: 29936-29944. doi 10.1074/jbc.M204733200.
  • Jurczyszyn A, Zebzda A, Czepiel J, Perucki W, Bazan-Socha S, Cibor D, Owczarek D, Majka M (2014) Geldanamycin and its derivatives inhibit the growth of myeloma cells and reduce the expression of the MET receptor. J Cancer 5: 480-490. doi: 10.7150/jca.8731.
  • Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, Van Wier S, Blackburn PR, Baker AS, Dispenzieri A (2012) Clonal competition with alternating dominance in multiple myeloma. Blood 120: 1067-1076. doi: 10.1182/blood-2012-01-405985.
  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129: 465-472. doi: 10.1016/j.cell.2007.04.019.
  • Kellner J, Liu B, Kang Y, Li (2013) Fact or fiction-identifying the elusive multiple myeloma stem cell. J Hematol Oncol 6: 91. doi: 10.1186/1756-8722-6-91.
  • Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M, Pals ST (2013) The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia 27: 1729-1737. doi: 10.1038/leu.2013.76.
  • Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37: 364-372. doi.org/10.1016/j.tibs.2012.06.004.
  • Lévesque JP, Winkler IG. (2011) Hierarchy of immature hematopoietic cells related to blood flow and niche. Curr Opin Hematol 18: 220-225. doi: 10.1097/MOH.0b013e3283475fe7.
  • Lévesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, Nowlan B, Nilsson SK (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25: 1954-1965. doi: 10.1634/stemcells.2006-0688.
  • Li Z, Rich JN (2010) Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Curr Top Microbiol Immunol 345: 21-30. doi: 10.1007/82_2010_75.
  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44: 479-496. doi: 10.3109/10715761003667554.
  • Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15: 167-170. doi: 10.1016/j.ccr.2009.02.007.
  • Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25: 91-101. doi: 10.1016/j.ccr.2013.12.015.
  • Lu L, Payvandi F, Wu L, Zhang LH, Hariri RJ, Man HW, Chen RS, Muller GW, Hughes CC, Stirling DI, Schafer PH, Bartlett JB (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77: 78-86. doi: 10.1016/j.mvr.2008.08.003.
  • Lu Y, Chu A, Turker MS, Glazer PM (2011) Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol Cell Biol 31: 3339-3350. doi: 10.1128/MCB.01121-10.
  • Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N, Gronthos S, Harris AL, Zannettino AC (2010) Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 95: 776-784. doi: 10.3324/haematol.2009.015628.
  • McIntyre A, Harris AL (2015) Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 7: 368-379. doi: 10.15252/emmm.201404271.
  • Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, Fryer RA, Johnson DC, Begum DB, Hulkki Wilson S, Vijayaraghavan G, Titley I, Cavo M, Davies FE, Walker BA, Morgan GJ (2014) Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28: 1705-1715. doi: 10.1038/leu.2014.13.
  • Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H (2004) Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett 576: 14-20. doi: 10.1016/j.febslet.2004.08.053.
  • Mitra AK, Mukherjee UK, Harding T, Jang JS, Stessman H, Li Y, Abyzov A, Jen J, Kumar S, Rajkumar V, Van Ness B (2014) Single-cell transcriptomics identifies intra-tumor heterogeneity in human myeloma cell lines. Blood 124: 3385.
  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R, Munshi NC, Richardson PG, Hideshima T, Chauhan D, Gu X, Bailey C, Joseph M, Libermann TA, Rosen NS, Anderson KC (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107: 1092-1100. doi: 10.1182/blood-2005-03-1158.
  • Muz B, de la Puente P, Azab F, Luderer M, Azab AK (2014) Hypoxia promotes stem cell-like phenotype in multiple myeloma cells. Blood Cancer J 4: e262. doi: 10.1038/bcj.2014.82.
  • Mysore VS, Szablowski J, Dervan PB, Frost PJ (2016) A DNA-binding molecule targeting the adaptive hypoxic response in multiple myeloma has potent antitumor activity. Mol Cancer Res 14: 253-266. doi: 10.1158/1541-7786.MCR-15-0361.
  • Newman B, Liu Y, Lee HF, Sun D, Wang Y (2012) HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res 72: 4551-4561. doi: 10.1158/0008-5472.CAN-11-3600.
  • Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107: 4907-4916. doi: 10.1182/blood-2005-08-3531.
  • Palumbo A, Gay F, Bringhen S, Falcone A, Pescosta N, Callea V, Caravita T, Morabito F, Magarotto V, Ruggeri M, Avonto I, Musto P, Cascavilla N, Bruno B, Boccadoro M (2008) Bortezomib, doxorubicin and dexamethasone in advanced multiple myeloma. Ann Oncol 19: 1160-1165doi: 10.1093/annonc/mdn018.
  • Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O. (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: 220-231. doi: 10.1016/j.ccr.2009.01.027.
  • Papandreou I, Krishna C, Kaper F, Cai D, Giaccia AJ, Denko NC (2005) Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res 65: 3171-3178. doi: 10.1158/0008-5472.CAN-04-3395.
  • Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15: 1572-1581. doi: 10.1038/cdd.2008.84.
  • Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104: 5431-5436. doi: 10.1073/pnas.0701152104.
  • Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14: 191-201. doi: 10.1016/j.drup.2011.03.001.
  • Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, Harris AL (2010) Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29: 4424-4435. doi: 10.1038/onc.2010.191.
  • Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8: S62-S67.
  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721-732. doi: 10.1038/nrc1187.
  • Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007 cm8. doi: 10.1126/stke.4072007cm8.
  • Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2: 119-125.
  • Shin DH, Chun YS, Lee DS, Huang LE, Park JW. (2008) Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 111: 3131-3136. doi: 10.1182/blood-2007-11-120576.
  • Thienpont B, Steinbacher J, Zhao H, D'Anna F, Kuchnio A, Ploumakis A, Ghesquière B, Van Dyck L, Boeckx B, Schoonjans L, Hermans E, Amant F, Kristensen VN, Peng Koh K, Mazzone M, Coleman M, Carell T, Carmeliet P, Lambrechts D (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537: 63-68. doi: 10.1038/nature19081.
  • Tsai YP, WU KJ (2014) Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 134: 249-256. doi: 10.1002/ijc.28190.
  • Turilova VI, Smirnova TD (2012) Karyotypic variability of human Multiple Myeloma cell lines. Cell and Tissue Biology 6: 442-457. doi: 10.1134/S1990519X12050136
  • Vasudev NS, Reynolds AR. (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17: 471-494. doi: 10.1007/s10456-014-9420-y.
  • Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9: 10-7. doi: 10.1634/theoncologist.9-90005-10.
  • Watson JA, Watson CJ, McCann A, Baugh J (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5: 293-296.
  • Weinmann M, Jendrossek V, Güner D, Goecke B, Belka C (2004) Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. Faseb J 18: 1906-1908. doi: 10.1096/fj.04-1918fje.
  • Wu D, Yotnda P (2011) Induction and testing of hypoxia in cell culture. J Vis Exp (54): 2899. doi: 10.3791/2899.
  • Xia Y, Choi HK, Lee K. (2012) Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 49: 24-40. doi: 10.1016/j.ejmech.2012.01.033.
  • Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A, Raab MS, Vallet S, Zhou Y, Cartron MA (2009) Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res 69: 5082-5090. doi: 10.1158/0008-5472.CAN-08-4603.
  • Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4: 3793. doi: 10.1038/srep03793.
  • Zlei M, Egert S, Wider D, Ihorst G, Wäsch R, Engelhardt M (2007) Characterization of in vitro growth of multiple myeloma cells. Exp Hematol 35: 1550-1561. doi: 10.3791/2899.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv65p101kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.