Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 1 | 75-79
Article title

Compound heterozygous LDLR variant in severely affected familial hypercholesterolemia patient

Title variants
Languages of publication
Familial hypercholesterolemia (FH) is most commonly caused by mutations in the LDL receptor (LDLR), which is responsible for hepatic clearance of LDL from the blood circulation. We described a severely affected FH proband and their first-degree blood relatives; the proband was resistant to statin therapy and was managed on an LDL apheresis program. In order to find the causative genetic variant in this family, direct exon sequencing of the LDLR, APOB and PCSK9 genes was performed. We identified a compound heterozygous mutation in the proband with missense p.(W577C) and frameshift p.(G676Afs33) variants at exons 12 and 14 of the LDLR gene respectively. DNA sequencing of LDLR gene from the parents demonstrated that the missense variant was inherited from the mother and frameshift variant was inherited from the father. The frameshift variant resulted in a stop signal 33 codons downstream of the deletion, which most likely led to a truncated protein that lacks important functional domains, including the trans-membrane domain and the cytoplasmic tail domain. The missense variant is also predicted to be likely pathogenic and affect EGF-precursor homology domain of the LDLR protein. The segregation pattern of the variants was consistent with the lipid profile, suggesting a more severe FH phenotype when the variants are in the compound heterozygous state. The finding of a compound heterozygous mutation causing severe FH phenotype is important for the genotype-phenotype correlation and also enlarges the spectrum of FH-causative LDLR variants in the Arab population, including the Saudi population.
Physical description
  • Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
  • Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
  • Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, Saudi Arabia
  • King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
  • Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
  • Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
  • Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
  • Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
  • Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
  • Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
  • King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
  • Faculty of Medicine, Alfaisal University, Riyadh, Saudi Arabia
  • Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
  • Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
  • Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34: 154-156. doi: 10.1038/ng1161.
  • Al-Allaf FA, Alashwal A, Abduljaleel Z, Taher MM, Siddiqui SS, Bouazzaoui A, Abalkhail H, Aun R, Al-Allaf AF, AbuMansour I, Azhar Z, Ba-hammam FA, Khan W, Athar M (2016) Identification of a recurrent frameshift mutation at the LDLR exon 14 (c.2027delG, p.(G676Afs*33)) causing familial hypercholesterolemia in Saudi Arab homozygous children. Genomics 107: 24-32. doi: 10.1016/j.ygeno.2015.12.001.
  • Al-Allaf FA, Athar M, Abduljaleel Z, Taher MM, Khan W, Ba-Hammam FA, Abalkhail H, Alashwal A (2015) Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease. Gene 565: 76-84. doi: 10.1016/j.gene.2015.03.064.
  • Al-Allaf FA, Athar M, Abduljaleel Z, Bouazzaoui A, Taher MM, Own R, Al-Allaf AF, AbuMansour I, Azhar Z, Ba-hammam FA, Abalkhail H, Alashwal A (2014) Identification of a novel nonsense variant c.1332dup, p.(D445*) in the LDLR gene that causes familial hypercholesterolemia. Human Genome Variation 1: 14021. doi: 10.1038/hgv.2014.21.
  • Al-Allaf FA, Coutelle C, Waddington SN, David AL, Harbottle R, Themis M (2010) LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. Int Arch Med 3: 36. doi: 10.1186/1755-7682-3-36.
  • Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol 160: 421-429. doi: 10.1093/aje/kwh237.
  • Berge KG, Canner PL (1991) Coronary drug project: experience with niacin. Coronary Drug Project Research Group. Eur J Clin Pharmacol 40: S49-S51.
  • Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, Kuivenhoven JA, Nordestgaard BG, Descamps OS, Steinhagen-Thiessen E, Tybjærg-Hansen A, Watts GF, Averna M, Boileau C, Borén J, Catapano AL, Defesche JC, Hovingh GK, Humphries SE, Kovanen PT, Masana L, Pajukanta P, Parhofer KG, Ray KK, Stalenhoef AF, Stroes E, Taskinen MR, Wiegman A, Wiklund O, Chapman MJ, European Atherosclerosis Society Consensus Panel on Familial Hypercholesterolaemia (2014) Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J 35: 2146-2157. doi: 10.1093/eurheartj/ehu274.
  • Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, Millar JS, Ikewaki K, Siegelman ES, Gregg RE, Rader DJ (2007) Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med 356: 148-156. doi: 10.1056/NEJMoa061189.
  • Davidson MH, Dillon MA, Gordon B, Jones P, Samuels J, Weiss S, Isaacsohn J, Toth P, Burke SK (1999) Colesevelam hydrochloride (cholestagel): a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch Intern Med 159: 1893-1900.
  • El Harchaoui K, Akdim F, Stroes ES, Trip MD, Kastelein JJ (2008) Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins. Am J Cardiovasc Drugs 8: 233-242.
  • Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A 105: 11915-11920. doi: 10.1073/pnas.0805434105.
  • Gagne C, Gaudet D, Bruckert E (2002) Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 105: 2469-2475. doi: 10.1161/01.CIR.0000018744.58460.62.
  • Gupta N, Fisker N, Asselin MC, Lindholm M, Rosenbohm C, Orum H, Elmen J, Seidah NG, Straarup EM (2010) A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 5: e10682. doi: 10.1371/journal.pone.0010682.
  • Heath KE, Humphries SE, Middleton-Price H, Boxer M (2001) A molecular genetic service for diagnosing individuals with familial hypercholesterolaemia (FH) in the United Kingdom. Eur J Hum Genet 9: 244-252. doi: 10.1038/sj.ejhg.5200633.
  • Hattori H, Hirayama T, Nobe Y, Nagano M, Kujiraoka T, Egashira T, Ishii J, Tsuji M, Emi M (2002) Eight novel mutations and functional impairments of the LDL receptor in familial hypercholesterolemia in the north of Japan. J Hum Genet 47: 80-87.
  • Hobbs HH, Brown MS, Goldstein JL (1992) Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1: 445-466. doi: 10.1002/humu.1380010602.
  • Jaber L, Halpern GJ, Shohat M (1998) The impact of consanguinity worldwide. Community Genet 1: 12-17.
  • Jeon H, Blacklow SC (2005) Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem 74: 535-562. doi: 10.1146/annurev.biochem.74.082803.133354.
  • Leitersdorf E, Tobin EJ, Davignon J, Hobbs HH (1990) Common low-density lipoprotein receptor mutations in the French Canadian population. J Clin Invest 85: 1014-1023. doi: 10.1172/JCI114531.
  • Lindgren V, Luskey KL, Russell DW, Francke U (1985) Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes.Proc Natl Acad Sci U S A 82: 8567-8571.
  • Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, Wiegman A, Santos RD, Watts GF, Parhofer KG, Hovingh GK, Kovanen PT, Boileau C, Averna M, Borén J, Bruckert E, Catapano AL, Kuivenhoven JA, Pajukanta P, Ray K, Stalenhoef AF, Stroes E, Taskinen MR, Tybjærg-Hansen A, European Atherosclerosis Society Consensus Panel (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 34: 3478-3490. doi: 10.1093/eurheartj/eht273.
  • Muiya P, Wakil S, Al-Najai M, Meyer BF, Al-Mohanna F, Alshahid M, Dzimiri N (2009) Identification of loci conferring risk for premature CAD and heterozygous familial hyperlipidemia in the LDLR, APOB and PCSK9 genes. Int J Diabetes Mellit 1: 16-21.
  • Rudenko G, Deisenhofer J (2003) The low-density lipoprotein receptor: ligands, debates and lore. Curr Opin Struct Biol 13: 683-689.
  • Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, Tribble DL, Flaim JD, Crooke ST (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375: 998-1006. doi: 10.1016/S0140-6736(10)60284-X.
  • Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt TJ, Wittes J (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 341: 410-418. doi: 10.1056/NEJM199908053410604.
  • Scientific Steering Committee on behalf of the Simon Broome Register Group (1991) Risk of fatal coronary heart disease in familial hypercholesterolaemia. BMJ 303: 893-896.
  • Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche J, Sijbrands EJ, Roeters van Lennep JE, Stalenhoef AF, Wiegman A, de Graaf J, Fouchier SW, Kastelein JJ, Hovingh GK (2015) Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J 36: 560-565. doi: 10.1093/eurheartj/ehu058.
  • Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med 4: 214-225. doi: 10.1038/ncpcardio0836.
  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173-178. doi: 10.1038/nature03121.
  • Steyn K, Goldberg YP, Kotze MJ, Steyn M, Swanepoel AS, Fourie JM, Coetzee GA, Van der Westhuyzen DR (1996) Estimation of the prevalence of familial hypercholesterolaemia in a rural Afrikaner community by direct screening for three Afrikaner founder low density lipoprotein receptor gene mutations. Hum Genet 98: 479-484.
  • Sudhop T, Lutjohann D, Kodal A, Igel M, Tribble DL, Shah S, Perevozskaya I, von Bergmann K (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106: 1943-1948. doi: 10.1161/01.CIR.0000034044.95911.DC.
  • Thompson GR, Barbir M, Davies D, Dobral P, Gesinde M, Livingston M, Mandry P, Marais AD, Matthews S, Neuwirth C, Pottle A, le Roux C, Scullard D, Tyler C, Watkins S (2010) Efficacy criteria and cholesterol targets for LDL apheresis. Atherosclerosis 208: 317-321. doi: 10.1016/j.atherosclerosis.2009.06.010.
  • Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, Skolnick MH, Hopkins PN, Hunt SC, Shattuck DM (2004) A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet 114: 349-353. doi: 10.1007/s00439-003-1071-9.
  • Yang KC, Su YN, Shew JY, Yang KY, Tseng WK, Wu CC, Lee YT (2007) LDLR and ApoB are major genetic causes of autosomal dominant hypercholesterolemia in a Taiwanese population. J Formos Med Assoc 106: 799-807. doi: 10.1016/S0929-6646(08)60044-3.
  • Zetterström R (2011) Investigations on a child with familial hypercholesterolaemia. Acta Paediatr 100: 311-313. doi: 10.1111/j.1651-2227.2010.02020.x.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.