Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 4 | 671-677
Article title

Molecular recognition of glyconanoparticles by RCA and E. coli K88 - designing transports for targeted therapy

Title variants
Languages of publication
The targeted drug delivery has been studied as one of the main methods in medicine to ensure successful treatments of diseases. Pharmaceutical sciences are using micro or nano carriers to obtain a controlled delivery of drugs, able to selectively interact with pathogens, cells or tissues. In this work, we modified bovine serum albumin (BSA) with lactose, obtaining a neoglycan (BSA-Lac). Subsequently, we synthesized glyconanoparticles (NPBSA-Lac) with the premise that it would be recognized by microbial galactose specific lectins. NPBSA-Lac were tested for bio-recognition with adhesins of E. coli K88 and Ricinus communis agglutinin I (RCA). Glycation of BSA with lactose was analyzed by electrophoresis, infrared spectroscopy and fluorescence. Approximately 41 lactoses per BSA molecule were estimated. Nanoparticles were obtained using water in oil emulsion method and spheroid morphology with a range size of 300-500 nm was observed. Specific recognition of NPBSA-Lac by RCA and E. coli K88 was displayed by aggregation of nanoparticles analyzed by dynamic light scattering and atomic force microscopy. The results indicate that the lactosylated nanovectors could be targeted at the E. coli K88 adhesin and potentially could be used as a transporter for an antibacterial drug.
Physical description
  • Arrondo JL, Goñi FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72: 367-405. doi: 10.1016/S0079-6107(99)00007-3.
  • Arrondo JL, Muga A, Castresana J, Goñi FM (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol 59: 23-56. doi: 10.1016/0079-6107(93)90006-6.
  • Berne CD, Hardy A, Brun GG (2015) Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol Spectr 3: 1-45. doi: 10.1128/microbiolspec.MB-0018-2015.
  • Dandagi PM, Mastiholimath VS, Patil MB, Gupta MK (2006) Biodegradable microparticulate system of captopril. Int J Pharm 307: 83-88. doi: 10.1016/j.ijpharm.2005.10.025.
  • de Jesús Valle MJ, López Díaz D, Velázquez Salicio M, Sánchez Navarro A (2016) Development and in vitro evaluation of a novel drug delivery system (albumin microspheres containing liposomes) applied to vancomycin. J Pharm Sci 105: 2180-2187. doi: 10.1016/j.xphs.2016.05.009.
  • Dominguez-Medina S, Chen S, Blankenburg J, Swanglap P, Landes CF, Link S (2016) Measuring the hydrodynamic size of nanoparticles using fluctuation correlation spectroscopy. Annu Rev Phys Chem 67: 489-514. doi: 10.1146/annurev-physchem-040214-121510.
  • Duy C, Fitter J (2006) How aggregation and conformational scrambling of unfolded states govern fluorescence emission spectra. Biophys J 90: 3704-3711. doi: 10.1529/biophysj.105.078980.
  • Eissa AM, Abdulkarim A, Sharples GJ, Cameron NR (2016) Glycosylated nanoparticles as efficient antimicrobial delivery agents. Biomacromolecules 17: 2672-2679. doi: 10.1021/acs.biomac.6b00711.
  • El-Boubbou K, Gruden C, Huang X (2007) Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection decontamination and strain differentiation. J Am Chem Soc 129: 13392-13393. doi: 10.1021/ja076086e.
  • Esko J, Sharon N (2009) Microbial lectins: hemagglutinins adhesins and toxins. In Essentials of Glyco-Biology. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, eds, pp 489-500. Cold Spring Harbor Laboratory Press; 2009.
  • González-Ortiz G, Pérez JF, Hermes RG, Molist F, Jiménez-Díaz R, Martín-Orúe SM (2014) Screening the ability of natural feed ingredients to interfere with the adherence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus. Brit J Nutrit 111: 633-642.
  • Guler G, Vorob'ev MM, Vogel V, Mantele W (2016) Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 161: 8-18. doi: 10.1016/j.saa.2016.02.013.
  • Jian W, He J, Sun Y, Pang J (2016) Comparative studies on physicochemical properties of bovine serum albumin-glucose and bovine serum albumin-mannose conjugates formed via Maillard reaction. LWT-Food Sci Technol 69: 358-364
  • Jimenez-Castano L, Villamiel M, López-Fandiño R (2007) Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass. Food Hydrocolloids 21: 433-443. doi: 10.1016/j.foodhyd.2006.05.006
  • Kim B, Lee C, Lee ES, Shin BS, Youn YS (2016) Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J Pharm Sci 1-7. doi: 10.1016/j.ajps.2016.05.005
  • Kratz F (2008) Albumin as a drug carrier: design of prodrugs drug conjugates and nanoparticles. J Control Release 132: 171-183. doi: 10.1016/j.jconrel.2008.05.010.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. PMID: 5432063.
  • Ledesma-Osuna AI, Ramos-Clamont G, Vázquez-Moreno L (2008) Characterization of bovine serum albumin glycated with glucose galactose and lactose. Acta Biochim Pol 55: 491-497.
  • Ledesma-Osuna AI, Ramos-Clamont G, Vázquez-Moreno L (2009) Biorecognition of chemically modified bovine serum albumin with lactose prepared under different conditions. J Agric Food Chem 57: 9734-9739. doi: 10.1021/jf9020976.
  • Lin CC, Yeh YC, Yang CY, Chen CL, Chen GF, Chen CC, Wu YC (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124: 3508-3509. doi: 10.1021/ja0200903.
  • Miura Y, Hoshino Y, Seto H (2016) Glycopolymer nanobiotechnology. Chem Rev 116: 1673-1692. doi: 10.1021/acs.chemrev.5b00247.
  • Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28: 4600-4607. doi: 10.1016/j.biomaterials.2007.07.029.
  • Plotnikova OA, Mel'nikov AG, Mel'nikov GV, Gubina TI (2016) Quenching of tryptophan fluorescence of bovine serum albumin under the effect of ions of heavy metals. Opt Spectrosc 120: 65-69. doi: 10.1134/S0030400X16010148
  • Reichardt NC, Martín-Lomas M, Penadés S (2013) Glyconanotechnology. Chem Soc Rev 42: 4358-4376. doi: 10.1039/C2CS35427F.
  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discovery Today 8: 1112-1120. doi: 10.1016/S1359-6446(03)02903-9.
  • Sarabia-Sainz AI, Ramos-Clamont G, Candia-Plata MM, Vázquez-Moreno L (2009) Biorecognition of Escherichia coli K88 adhesin for glycated porcine albumin. Int J Biol Macromol 44: 175-181. doi: 10.1016/j.ijbiomac.2008.11.009.
  • Sarabia-Sainz AI, Sarabia-Sainz H, Montfort G, Mata-Haro V, Guzman-Partida A, Guzman R, Garcia-Soto M, Vazquez-Moreno L (2015) K88 Fimbrial Adhesin targeting of microspheres containing gentamicin made with albumin glycated with lactose. Int J Mol Sci 16: 22425. doi: 10.3390/ijms160922425.
  • Sarabia-Sainz AI, Ramos-Clamont G, Winzerling J, Vázquez-Moreno L (2011) Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose. Acta Biochim Pol 58: 95-100.
  • Sarabia-Sainz AM, Ramos-Clamont G, Lizardi-Mendoza J, Sánchez-Saavedra MDP, Candia-Plata MDC, Guzman RZ, Lucero-Acuña A, Vazquez-Moreno L (2012) Formulation and characterization of gentamicin-loaded albumin microspheres as a potential drug carrier for the treatment of E. coli k88 infections. Int J Drug Delivery 4: 209-218.
  • Sarabia-Sainz HM, Armenta-Ruiz C, Sarabia-Sainz AI, Guzmán-Partida AM, Ledesma-Osuna AI, Vázquez-Moreno L, Ramos-Clamont Montfort G (2013) Adhesion of enterotoxigenic Escherichia coli strains to neoglycans synthesised with prebiotic galactooligosaccharides. Food Chem 141: 2727-2734. doi: 10.1016/j.foodchem.2013.05.040.
  • Sattin S, Bernardi A (2016) Glycoconjugates and glycomimetics as microbial anti-adhesives. Trends Biotechnol 34: 483-495. doi: 10.1016/j.tibtech.2016.01.004.
  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14: 53R-62R. doi: 10.1093/glycob/cwh122.
  • Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18: 1-14. doi: 10.4196/kjpp.2014.18.1.1.
  • Tang X, Wu Q, Le G, Shi Y (2012) Effects of heat treatment on structural modification and in vivo antioxidant capacity of soy protein. Nutrition 28: 1180-1185. doi: 10.1016/j.nut.2012.03.011.
  • Thao le Q, Byeon HJ, Lee C, Lee S, Lee ES, Choi YW, Choi HG, Park ES, Lee KC, Youn YS (2016) Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharm Res 33: 615-626. doi: 10.1007/s11095-015-1814-z.
  • Valtola L, Rahikkala A, Raula J, Kauppinen EI, Tenhu H, Hietala S (2014) Synthesis and lectin recognition of glycosylated amphiphilic nanoparticles. Eur Polymer J 59: 282-289. doi: 10.1016/j.eurpolymj.2014.07.031
  • Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, Schachner M, Kleene R (2011) Synapsin i is an oligomannose-carrying glycoprotein acts as an oligomannose-binding lectin and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 31: 7275-7290. doi: 10.1523/JNEUROSCI.6476-10.2011.
  • Xu R, Fisher M, Juliano RL (2011) Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 22: 870-878. doi: 10.1021/bc1002295.
  • Yilmaz G, Becer CR (2015) Glyconanoparticles and their interactions with lectins. Polymer Chem 6: 5503-5514. doi: 10.1039/C5PY00089K
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.