PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 4 | 635-639
Article title

Selenite restores Pax6 expression in neuronal cells of chronically arsenic-exposed Golden Syrian hamsters

Content
Title variants
Languages of publication
EN
Abstracts
EN
Arsenic is a worldwide environmental pollutant that generates public health concerns. Various types of cancers and other diseases, including neurological disorders, have been associated with human consumption of arsenic in drinking water. At the molecular level, arsenic and its metabolites have the capacity to provoke genome instability, causing altered expression of genes. One such target of arsenic is the Pax6 gene that encodes a transcription factor in neuronal cells. The aim of this study was to evaluate the effect of two antioxidants, α-tocopheryl succinate (α-TOS) and sodium selenite, on Pax6 gene expression levels in the forebrain and cerebellum of Golden Syrian hamsters chronically exposed to arsenic in drinking water. Animals were divided into six groups. Using quantitative real-time reverse transcriptase (RT)-PCR analysis, we confirmed that arsenic downregulates Pax6 expression in nervous tissues by 53 ± 21% and 32 ± 7% in the forebrain and cerebellum, respectively. In the presence of arsenic, treatment with α-TOS did not modify Pax6 expression in nervous tissues; however, sodium selenite completely restored Pax6 expression in the arsenic-exposed hamster forebrain, but not the cerebellum. Although our results suggest the use of selenite to restore the expression of a neuronal gene in arsenic-exposed animals, its use and efficacy in the human population require further studies.
Keywords
Year
Volume
64
Issue
4
Pages
635-639
Physical description
Dates
published
2017
received
2017-05-05
revised
2017-08-14
accepted
2017-08-23
(unknown)
2017-12-05
References
  • Bach J, Sampayo-Reyes A, Marcos R, Hernandez A (2014) Ogg1 genetic background determines the genotoxic potential of environmentally relevant arsenic exposures. Arch Toxicol 88: 585-596. doi: 10.1007/s00204-013-1151-0.
  • Bellezza I, Grottelli S, Gatticchi L, Mierla AL, Minelli A (2014) α-Tocopheryl succinate pre-treatment attenuates quinonetoxicityin prostate cancer PC3 cells. Gene 539: 1-7. doi: 10.1016/j.gene.2014.02.009.
  • Bermingham EN, Hesketh JE, Sinclair BR, Koolaard JP, Roy NC (2014) Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: ameta-analysis. Nutrients 6: 4002-4031. doi: 10.3390/nu6104002.
  • Bhattacharjee P, Banerjee M, Giri AK (2013) Role of genomic instability in arsenic-induced carcinogenicity. A review. Environ Int 53: 29-40. doi: 10.1016/j.envint.2012.12.004.
  • Blake JA, Ziman MR (2014) Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 141: 737-751. doi: 10.1242/dev.091785.
  • Chang TI, Horal M, Jain SK, Wang F, Patel R, Loeken MR (2003) Oxidant regulation of gene expression and neural tube development: Insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia 46: 538-545. doi: 10.1007/s00125-003-1063-2.
  • Chung CJ, Pu YS, Chen YT, Su CT, Wu CC, Shiue HS, Huang CY, Hsueh YM (2011) Protective effects of plasma alpha-tocopherols onthe risk of inorganicarsenic-related urothelial carcinoma. Sci Total Environ 409: 1039-1045. doi: 10.1016/j.scitotenv.2010.11.037.
  • Duan D, Fu Y, Paxinos G, Watson C (2013) Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct Funct 218: 353-372. doi: 10.1007/s00429-012-0397-2.
  • Flora SJ (1999) Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol 26: 865-869.
  • Flora SJ, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response tosome thiol chelators in rats. Life Sci 77: 2324-2337. doi: 10.1016/j.lfs.2005.04.016.
  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the life time of monozygotic twins. Proc Natl Acad Sci U S A 102: 10604-10609. doi: 10.1073/pnas.0500398102.
  • Fujimura M, Usuki F (2014) Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury. Arch Toxicol 88: 109-113. doi: 10.1007/s00204-013-1089-2.
  • Gailer J (2009) Chronic toxicity of As(III) in mammals: the role of (GS)(2)AsSe(-). Biochimie 91: 1268-1272. doi: 10.1016/j.biochi.2009.06.004.
  • Hathcock JN, Azzi A, Blumberg J, Bray T, Dickinson A, Frei B, Jialal I, Johnston CS, Kelly FJ, Kraemer K, Packer L, Parthasarathy S, Sies H, Traber MG (2005) Vitamins E and C are safe across abroad range of intakes. Am J Clin Nutr 81: 736-745.
  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31: 95-107. doi: 10.1002/jat.1649.
  • Kaur H, Mishra D, Bhatnagar P, Kaushik P, Flora SJS (2009) Co-administration of α-lipoic acid and vitamin c protects liver and brain oxidative stress in mice exposed to arsenic contaminated water. Water Qual Expo Heal 1: 135-144. doi: 10.1007/s12403-009-0013-8
  • Li WH, Shi YC, Tseng IL, Liao VH (2013) Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PloS One 8: e62387. doi: 10.1371/journal.pone.0062387.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DeltaDeltaC(T))method. Methods 25: 402-408. doi: 10.1006/meth.2001.1262.
  • Luo JH, Qiu ZQ, Zhang L, Shu WQ (2012) Arsenite exposure altered the expression of NMDA receptor and post synaptic signaling proteins in rat hippocampus. Toxicol Lett 211: 39-44. doi: 10.1016/j.toxlet.2012.02.021.
  • Medeiros MC, Mello A, Gemelli T, Teixeira C, de Almeida M, de Andrade RB, Wannmacher CM, Guerra RB, Gomez R, Funchal C (2012) Effect of chronic administration of the vinylchalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-oneon oxidative stress in different brain areas of rats. Neurochem Res 37: 928-934. doi: 10.1007/s11064-011-0685-x.
  • Neuzil J, Massa H (2005) Hepatic processing determines dual activity of alpha-tocopheryl succinate: a novel paradigm for a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun 327: 1024-1027. doi: 10.1016/j.bbrc.2004.12.115.
  • Neuzil J, Wang XF, Zhao Y, Wu K (2006) Vitamin E Analogs as Anticancer Agents. Press Taylor & Francis Group.
  • Norppa H, Westermarck T, Knuutila S (1980) Chromosomal effects of sodium selenite in vivo. III. Aberrations and sister chromatid exchanges in Chinese hamster bonemarrow. Hereditas 93: 101-105.
  • Prasad KN, Kumar B, Yan XD, Hanson AJ, Cole WC (2003) Alpha-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: a review. J Am Coll Nutr 22: 108-117.
  • Rocha RA, Gimeno-Alcaniz JV, Martin-Ibanez R, Canals JM, Velez D, Devesa V (2011) Arsenic and fluoride induce neural progenitor cell apoptosis. Toxicol Lett 203: 237-244. doi: 10.1016/j.toxlet.2011.03.023.
  • Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genetics 5: e1000511. doi: 10.1371/journal.pgen.1000511.
  • Stankov K, Bajin-Katic K, Stanimirov B, Karadzic D, Kovacevic Z (2007) Alpha-tocopheryl succinate (α-TOS) influences cell vitality and enzyme activity in Ehrlich ascites carcinoma cells. Arch Oncol 15: 65-68. doi: 10.2298/AOO0704065S
  • Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14: 1395-1412.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725-2729. doi: 10.1093/molbev/mst197.
  • Tripathi N, Kannan GM, Pant BP, Jaiswal DK, Malhotra PR, Flora SJ (1997) Arsenic-induced changes in certain neurotransmitter levels and their recoveries following chelation in rat whole brain. Toxicol Lett 92: 201-208.
  • Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PloS One 8: e73720. doi: 10.1371/journal.pone.0073720.
  • Tyler CR, Allan AM (2014) The effects of arsenic exposureon neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1: 132-147. doi: 10.1007/s40572-014-0012-1.
  • Vaz AR, Silva SL, Barateiro A, Falcao AS, Fernandes A, Brito MA, Brites D (2011) Selective vulnerability of rat brain regions to unconjugated bilirubin. Mol Cell Neurosci 48: 82-93. doi: 10.1016/j.mcn.2011.06.008.
  • Wang X, Zhang J, Zhao L, Hu S, Piao F (2013) Effect of subchronic exposure to arsenic on levels of essential trace elements in micebrain and its gender difference. Biometals 26: 123-131. doi: 10.1007/s10534-012-9599-6.
  • WHO (2010) Exposure to Arsenic: A Major Public Health Concern. In Organization WH ed. http://www.who.int/ipcs/features/arsenic.pdf
  • Wlodraczyk B, Bennett GD, Calvin JA, Craig JC, Finnell RH (1996) Arsenic-induced alterations in embryonic transcription factor gene expression: implications for abnormal neural development. Dev Genet 18: 306-315. doi: 10.1002/(SICI)1520-6408(1996)18:4<306::AID-DVG4>3.0.CO;2-D.
  • Zhang C, Li S, Sun Y, Dong W, Piao F, Piao Y, Liu S, Guan H, Yu S (2014) Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression. Toxicol Lett 228: 260-269. doi: 10.1016/j.toxlet.2014.05.007.
  • Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Yang Y, Lavaute TM, Li XJ, Ayala M, Bondarenko GI, Du ZW, Jin Y, Golos TG, Zhang SC (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7: 90-100. doi: 10.1016/j.stem.2010.04.017.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv64p635kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.