PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 4 | 597-602
Article title

Sclerostin and bone metabolism markers in hyperthyroidism before treatment and interrelations between them

Content
Title variants
Languages of publication
EN
Abstracts
EN
Sclerostin, which is a glycoprotein produced by osteocytes, reduces the formation of bones by inhibiting the Wnt signal pathway. Thyroid hormones are related with Wnt signal pathway and it has been reported that increased thyroid hormones in hyperthyroidism fasten epiphysis maturation in childhood, and increase the risk of bone fractures by stimulating the bone loss in adults. The aim of this study was to examine the sclerostin serum levels, the relation between sclerostin and thyroid hormones as well as the biochemical markers of the bone metabolism in patients with hyperthyroidism (including multinodular goiter and Graves' disease), whose treatments have not started yet. No difference was found in the serum sclerostin levels between the hyperthyroidism group (n=24) and the control group (n=24) (p=0.452). The serum osteocalcin levels and 24-hour urinary phosphorus excretion were found to be higher in the hyperthyroid group than in the control group (p<0.001, p=0.009). A positive correlation was determined between the sclerostin and bone alkaline phosphatase levels (p<0.001); a negative correlation between the osteocalcin and thyroid stimulating hormone (TSH) (p<0.05); a positive correlation between the osteocalcin and thyroid hormones (FT3,FT4) (p<0.001); and a positive correlation between the deoxypyridinoline and hydroxyproline (p<0.001). No correlation was determined between sclerostin and TSH,FT3,FT4 (p>0.05). Therefore, we consider that a long-term study that covers the pre-post treatment stages of hyperthyroidism, including both the destruction and construction of the skeleton would be more enlightening. Moreover, the assessment of the synthesis of sclerostin in the bone tissue and in the serum level might show differences.
Publisher

Year
Volume
64
Issue
4
Pages
597-602
Physical description
Dates
published
2017
received
2016-04-20
revised
2017-07-05
accepted
2017-08-03
(unknown)
2017-10-25
Contributors
  • Department of Biochemistry, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
  • Department of Biochemistry, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
  • Department of Endocrine and Metabolism, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
author
  • Department of Endocrine and Metabolism, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
author
  • Department of Biochemistry, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
author
  • Department of Biochemistry, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
  • Department of Biochemistry, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
  • Department of Biostatistics, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
  • Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bülent Ecevit University, 67630 Zonguldak, Turkey
References
  • Akalın A, Colak O, Alatas O, Efe B (2002) Bone remodelling markers and serum cytokines in patients with hyperthyroidism. Clin Endocrinol (Oxf) 57: 125-129. doi: 10.1046/j.1365-2265.2002.01578.x.
  • Barsal G, Taneli F, Atay A, Hekimsoy Z, Erciyas F (2004) Serum osteocalcin levels in hyperthyroidism before and after antithyroid therapy. Tohoku J Exp Med 203: 183-188. doi: 10.1620/tjem.203.183.
  • Bassett JH, O'Shea PJ, Sriskantharajah S, Rabier B, Boyde A, Howell PG, Weiss RE, Roux JP, Malaval L, Clement-Lacroix P, Samarut J, Chassande O, Williams GR (2007) Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol 21: 1095-1107 doi: 10.1210/me.2007-0033.
  • Benayahu D, Shamay A, Wientroub S (1997) Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes. Biochem Biophys Res Commun 231: 442-446. doi: 10.1006/bbrc.1997.6116.
  • Ben-Shlomo A, Hagag P, Evans S, Weiss M (2001) Early postmenopausal bone loss in hyperthyroidism. Maturitas 39: 19-27. doi: 10.1016/S0378-5122(00)00179-1.
  • Bergman I, Loxley R (1963) Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Chem 35: 1961-1965. doi: 10.1021/ac60205a053
  • Calvo MS, Eyre DR, Gundberg CM (1996) Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 17: 333-368. doi: 10.1210/edrv-17-4-333.
  • Cardoso LF, Maciel LM, Paula FJ (2014) The multiple effects of thyroid disorders on bone and mineral metabolism. Arq Bras Endocrinol Metabol 58: 452-463. doi: 10.1590/0004-2730000003311.
  • International Society for Clinical Densitometry (ISCD) Official Positions - Adult. Available from: http://www.iscd.org/officialpositions/2013-iscd-official-positions-adult; 2013
  • Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116: 1202-1209. doi: 10.1172/JCI28551.
  • Lee AJ, Hodges S, Eastell R (2000) Measurement of osteocalcin. Ann Clin Biochem 37: 432-446. doi: 10.1177/000456320003700402.
  • Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J Bone Miner Res 24: 1651-1661. doi: 10.1359/jbmr.090411.
  • Mosekilde L, Melsen F, Bagger JP, Myhre-Jensen O, Schwartz Sorensen N (1977) Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium-phosphorus metabolism. Acta Endocrinol 85: 515-525. doi: 10.1530/acta.0.0850515.
  • Nagasaka S, Sugimoto H, Nakamura T, Kusaka I, Fujisawa G, Sakuma N, Tsuboi Y, Fukuda S, Honda K, Okada K, İshikawa S, Saito T (1997) Antithyroid therapy improves bony manifestations and bone metabolic markers in patients with Graves' thyrotoxicosis. Clin Endocrinol (Oxf) 47: 215-221. doi: 10.1046/j.1365-2265.1997.2401045.x.
  • Ogilvy-Stuart AL (2002) Neonatal thyroid disorders. Arch Dis Child Fetal Neonatal Ed 87: F165-F171. doi: 10.1136/fn.87.3.F165.
  • Ohishi K, Ishida H, Nagata T, Yamauchi N, Tsurumi C, Nishikawa S, Wakano Y (1994) Thyroid hormone suppresses the differentiation of osteoprogenitor cells to osteoblasts, but enhances functional activities of mature osteoblasts in cultured rat calvaria cells. J Cell Physiol 161: 544-552.
  • Ohıshı T, Kushıda K, Takahashı M, Kawana K, Yagı K, Kawakamı K, Horıuchı K, Inoue T (1994) Urinary bone resorption markers in patients with metabolic bone disorders. Bone 15: 15-20. doi: 10.1016/8756-3282(94)90885-0.
  • O'Shea P J, Kim DW, Logan JG, Davis S, Walker RL, Meltzer PS, Cheng SY, Williams GR (2012) Advanced bone formation in mice with a dominant-negative mutation in the thyroid hormone receptor β gene due to activation of Wnt/β-catenin protein signaling. J Biol Chem 287: 17812-17822. doi: 10.1074/jbc.M111.311464.
  • Pantazi H, Papapetrou PD (2000) Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J Clin Endocrinol Metab 85: 1099-1106. doi: 10.1210/jcem.85.3.6457.
  • Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. Faseb J 19: 1842-1844. doi: 10.1096/fj.05-4221fje.
  • Sabuncu T, Aksoy N, Arıkan E, Ugur B, Tasan E, Hatemi H (2001) Early changes in parameters of bone and mineral metabolism during therapy for hyper- and hypothyroidism. Endocr Res 27: 203-213. doi: 10.1081/ERC-100107181.
  • Schouten BJ, Prickett TC, Hunt PJ, Richards AM, Geffner ME, Olney RC, Espiner EA (2012) C-type natriuretic peptide forms in adult hyperthyroidism: correlation with thyroid hormones and markers of bone turnover. Clin Endocrinol (Oxf) 76: 790-796. doi: 10.1111/j.1365-2265.2011.04295.x.
  • Skowrońska-Jóźwiak E, Krawczyk-Rusiecka K, Lewandowski KC, Adamczewski Z, Lewinski A (2012) Successful treatment of thyrotoxicosis is accompanied by a decrease in serum sclerostin levels. Thyroid Res 5: 14. doi: 10.1186/1756-6614-5-14.
  • Skowrońska-Jozwiak E, Lewandowski KC, Adamczewski Z, Krawczyk-Rusiecka K, Lewiński A (2015) Mechanisms of normalisation of bone metabolism during recovery from hyperthyroidism: potential role for sclerostin and parathyroid hormone. Int J Endocrinol 2015: 948384. doi: 10.1155/2015/948384.
  • Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135: 929-937. doi: 10.1210/endo.135.3.8070388.
  • Tsourdi E, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M (2015) Hyperthyroidism and hypothyroidism in male mice and their effects on bone mass, bone turnover, and the Wnt inhibitors sclerostin and Dickkopf-1. Endocrinology 156: 3517-3527. doi: 10.1210/en.2015-1073.
  • Van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Löwik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805-814. doi: 10.1084/jem.20031454.
  • Van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, Quax PH, Vrieling H, Papapoulos SE, ten Dijke P, Löwik CW (2007) Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22: 19-28. doi: 10.1359/jbmr.061002.
  • Vesper HW, Audain C, Woolfitt A, Ospina M, Barr J, Robins SP, Myers GL (2003) High-performance liquid chromatography method to analyze free and total urinary pyridinoline and deoxypyridinoline. Anal Biochem 318: 204-211. doi: 10.1016/S0003-2697(03)00241-0.
  • Vestergaard P, Rejnmark L, Weeke J, Mosekilde L (2000) Fracture risk in patients treated for hyperthyroidism. Thyroid 10: 341-348. doi: 10.1089/thy.2000.10.341.
  • Wang L, Shao YY, Ballock RT (2007) Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J Bone Miner Res 22: 1988-1995. doi: 10.1359/jbmr.070806.
  • Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267-6276. doi: 10.1093/emboj/cdg599.
  • Xiaodong L, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in ıncreased bone formation vand bone strength. J Bone Miner Res 23: 860-869. doi: 10.1359/jbmr.080216.
  • Xiaofeng Li, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: 19883-19887. doi: 10.1074/jbc.M413274200.
  • Zaitseva OV, Shandrenko SG, Veliky MM (2015) Biochemical markers of bone collagen type I metabolism. Ukr Biochem J 87: 21-32. UDC 577.11:611.018.43.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv64p597kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.