PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 3 | 577-583
Article title

Synthesis and biological evaluation of 4'-O-acetyl-isoxanthohumol and its analogues as antioxidant and antiproliferative agents

Content
Title variants
Languages of publication
EN
Abstracts
EN
Isoxanthohumol (2) and its 4'-O-monoacylated (3) and 7,4'-O-diacetylated (4) derivatives were synthesized and evaluated in vitro for their cytotoxic activity against several cancer cell lines of various origins: MCF-7 (breast), A549 (lung), MESSA (uterine sarcoma), LoVo (colon), drug-resistant human cancer cells (MESSA/DX and LoVo/DX), glioblastoma (U-118 MG), and also towards the non-cancerous cell line MCF-10A (normal breast cells). An antiproliferative assay indicates that 7,4'-di-O-acylisoxanthohumol (4) has similar cytotoxicity to its precursor, isoxanthohumol (2), against selected cell lines (A549, MES-SA, MES-SA/5DX, and U-118 MG). Compound 4 was only slightly more cytotoxic to lung, colon, breast (cancerous and normal) and uterine sarcoma (drug sensitive and drug resistant) cell lines compared to its monoacylated derivative (3). Both acylated isoxanthohumols showed preferential activity against tumor cells (MCF-7) and low cytotoxicity to normal cells (MCF-10A), which suggests selectivity of the acylated isoxanthohumols towards cancer cells. Additionally, the activity of the acylated isoxanthohumols was higher than for 2. To the best of our knowledge this is the first report on bioactivity of monoacylated isoxanthohumol (3) and its ester derivatives as antiproliferative compounds in drug resistant cell cultures. Acylation of 2 decreased the antioxidant activity determined by the DPPH method in the order isoxanthohumol (2) >4'-O-acetylisoxanthohumol (3) >7,4'-di-O-acetylisoxanthohumol (4).
Publisher

Year
Volume
64
Issue
3
Pages
577-583
Physical description
Dates
published
2017
received
2017-05-10
revised
2017-07-01
accepted
2017-07-17
(unknown)
2017-08-12
Contributors
  • Faculty of Medicine, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, Rzeszów, Poland
  • Department of Biochemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
  • Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Wrocław, Poland
  • Faculty of Medicine, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, Rzeszów, Poland
  • Department of Biochemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
author
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
  • Department of Human Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów Poland
  • Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Wrocław, Poland
References
  • Anioł M, Świderska A, Stompor M, Żołnierczyk AK (2012) Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4'-O-substituted isoxanthohumols. Med Chem Res 21: 4230-4238. doi: 10.1007/s00044-011-9967-8.
  • Allsopp P, Possemiers S, Campbell D, Gill C, Rowland I (2013) A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. BioFactors 39: 441-447. doi: 10.1002/biof.1084.
  • Arczewska M, Kamiński D, Górecka E, Pociecha D, Rój E, Sławińska-Brych A, Gagoś M (2013) The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies. BBA Biomembranes 1828: 213-222. doi: 10.1016/j.bbamem.2012.10.009.
  • Delmulle L, Bellahcéne A, Dhooge W, Comhaire F, Roelens F, Huvaere K, Heyerick A, Castronovo V, De Keukeleire D (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus. L) in human prostate cancer cell lines. Phytomedicine 13: 732-734. doi: 10.1016/j.phymed.2006.01.001.
  • Harker WG, Sikic BI (1985) Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res 45: 4091-4096.
  • Hudcová T, Bryndová J, Fialová K, Fiala J, Karabín M, Jelínek L, Dostálek P (2014) Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J Inst Brew 120: 225-230. doi: 10.1002/jib.139
  • Inui T, Okumura K, Matsui H, Hosoya T, Kumazawa S (2017) Effect of harvest time on some in vitro functional properties of hop polyphenols. Food Chem 225: 69-76. doi: 10.1016/j.foodchem.2017.01.002.
  • Kiekow CJ, Figueiro F, Dietrich F, Vechia D, Pires EN, Jandrey EH, Gnoatto SC, Salbego CG, Battastini AM, Gosmann G (2016) Quercetin derivative induces cell death in glioma cells by modulating NF-kappa B nuclear translocation and caspase-3 activation. Eur J Pharm Sci 84: 116-122. doi: 10.1016/j.ejps.2016.01.019.
  • Krajnović T, Kaluderović GN, Wessjohann LA, Mijatović S, Maksimović-Ivanić D (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol Res 105: 62-73. doi: 10.1016/j.phrs.2016.01.011.
  • Lim HJ, Nguyen TT, Kim NM, Park JS, Jang TS, Kim D (2017) Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnol Lett 39: 415-421. doi: 10.1007/s10529-016-2261-6.
  • Magalhães PJ, Guido LF, Cruz JM, Barros AA (2007) Analysis of xanthohumol and isoxanthohumol in different hop products by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J Chromatogr A 1150: 295–301. doi: 10.1016/j.chroma.2006.08.019.
  • Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, Buhler DR (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37: 271-285. doi: 10.1016/S0278-6915(99)00019-8.
  • Mizobuchi S, Sato Y (1984) A new flavanone with antifungal activity isolated from hops. Agric Biol Chem 48: 2771-2775.
  • Mukai R, Fujikura Y, Murota K, Uehara M, Minekawa S, Matsui N, Kawamura T, Nemoto H, Terao J (2013) Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J Nutr 143: 1558-1564. doi: 10.3945/jn.113.176818.
  • Nevozhay D (2014) Cheburator software for automatically calculating drug inhibitory concentrations from in vitro screening assays. Plos One 9: e106186. doi: 10.1371/journal.pone.0106186.
  • Saik AY, Lim YY, Stanslas J, Choo WS (2017) Enzymatic synthesis of quercetin oleate esters using Candida antarctica lipase B. Biotechnol Lett 39: 297-304. doi: 10.1007/s10529-016-2246-5.
  • Sidoryk K, Jaromin A, Edward JA, Świtalska M, Stefańska J, Cmoch P, Zagrodzka J, Szczepek W, Peczyńska-Czoch W, Wietrzyk J, Kozubek A, Zarnowski R, Andes DR, Kaczmarek Ł (2014) Searching for new derivatives of neocryptolepine: synthesis, antiproliferative, antimicrobial and antifungal activities. Eur J Med Chem 78: 304-13. doi: 10.1016/j.ejmech.2014.03.060.
  • Stevens JF, Taylor AW, Clawson JE, Deinzer ML (1999) Fate of xanthohumol and related prenylflavonoids from hops to beer. J Agric Food Chem 47: 2421-2428. doi: 10.1021/jf990101k.
  • Stompor M, Potaniec B, Szumny A, Zieliński P, Żołnierczyk A, Anioł M (2013) Microbiological reduction of xanthohumol and 4-methoxychalcone. Przem Chem 92: 574-578
  • Stompor M, Żarowska B (2016) Antimicrobial activity of xanthohumol and its selected structural analogues. Molecules 21: E608. doi: 10.3390/molecules21050608.
  • Terao J, Mukai R (2014) Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Arch Biochem Biophys 559: 12-16. doi: 10.1016/j.abb.2014.04.002.
  • Venturelli S, Burkard M, Biendl M, Lauer UM, Frank J, Busch C (2016) Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 32: 1171-1178. doi: 10.1016/j.nut.2016.03.020.
  • Wesołowska O, Gąsiorowska J, Petrus J, Czarnik-Matusewicz B, Michalak K (2014) Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. BBA Biomembranes 1838: 173-184. doi: 10.1016/j.bbamem.2013.09.009.
  • Wilhelm, H, Wessjohann LA (2006) An effecient synthesis of the phytoestrogen 8-prenylnaringenin from xanthohumol by a novel demethylation process. Tetrahedron 62: 6961-6966. doi: 10.1016/j.tet.2006.04.060
  • Yong WK, Ho YF, Malek SN (2015) Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag 11: S275-S283. doi: 10.4103/0973-1296.166069.
  • Zhu ZY, Wang WX, Wang ZQ, Chen LJ, Zhang YJ, Liu XC, Wu SP, Zhang YM (2014) Synthesis and antitumor activity evaluation of chrysin derivatives. Eur J Med Chem 75: 297-300. doi: 10.1016/j.ejmech.2013.12.044.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv64p577kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.