Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 1 | 97-102

Article title

Intra-strains diversity of expression of polymorphic PKS4 gene in comparison in zearalenone production by Fusarium graminearum during in vitro cultivation

Content

Title variants

Languages of publication

EN

Abstracts

EN
Filamentous fungi belonging to the Fusarium genus are responsible for large economic losses due to their high pathogenicity and toxigenicity. Fusarium sp. may produce variety of mycotoxins, one of them is zearalenone (ZEA). The presence of the PKS4 gene shows the possibility of zearalenone biosynthesis by Fusarium sp. In this study, in four Fusarium graminearum and one Fusarium poae strains the presence of PKS4 genes and ZEA concentrations were determined. The presence of the PKS4 gene was confirmed by classical polymerase chain reaction (PCR) in three of four strains of F. graminearum. One strain with no PKS4 gene detected was found while still producing ZEA. In the present study, a real-time PCR assay has been successfully performed for the relative expression of Fusarium strains based on new designed primers targeting the PKS4 gene involved in ZEA biosynthesis. Result shows that P56/4 strain of F. graminearum has the highest mRNA level, in the range of 12, what correlates to the high production of this mycotoxin. In this study, a real-time PCR assay has been successfully developed for the prediction of the production of ZEA by F. graminearum strains by PCR real-time techniques based on primers targeting the gene, PKS4, involved in ZEA biosynthesis. The special significance was pointed to occurring genes polymorphism.

Year

Volume

63

Issue

1

Pages

97-102

Physical description

Dates

published
2016
received
2015-05-06
revised
2015-08-03
accepted
2015-09-22
(unknown)
2015-10-23

Contributors

  • Microbiology Department, prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
  • Microbiology Department, prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
  • Food Analysis Department, prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
  • Microbiology Department, prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
  • Baldwin T, Gaffoor I, Antoniw J, Andries C, Guenther J, Urban M, Hammond-Kosack K, Trail F (2010) A partial chromosomal deletion caused by random plasmid integration resulted in a reduced virulence phenotype in Fusarium graminearum. Mol Plant Microbe Interact 23: 1083-1096.
  • Baturo-Ciesniewska A, Suchorzynska M (2011) Verification of the effectiveness of SCAR (sequence characterized amplified region) primers fort he identification of Polish strains of Fusarium culmorum and their potential ability to produce B-trichothecenes and zearalenone. Int J Food Microbiol 148: 168-176.
  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16: 497-516.
  • Brown DW, Butchko RA, Baker SE, Proctor RH (2012) Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol 116: 318-331.
  • Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD. (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41: 454-462.
  • Brunner K, Kovalsky Paris MP, Paolino G, Bürstmayr H, Lemmens M, Berthiller F, Schuhmacher R, Krska R, Mach RL (2009) A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat. Anal Bioanal Chem 395: 1385-1394.
  • Chen Y, Zhou MG (2009) Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology 99: 441-446.
  • Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O'donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: 1400-1402.
  • Edwards SG, O'Callaghan J, Dobson DW (2002) PCR-based detection and quantification of mycotoxigenic fungi-review. Mycol Res 106: 1005-1025.
  • European Commission Regulation No 1126/2007. Commission regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regard Fusarium toxins in maize and maize products. OJEU L255, 14-17.
  • Gardiner DM, Stiller J, Kazan K (2014) Genome sequence of Fusarium graminearum isolate cs3005. Genome Announcements 2: e00227-14.
  • Geiser DM, Jimenez-Gasco MM, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O'Donnel K (2004) Fusarium - ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110: 473-479.
  • Hue FX, Huerre M, Rouffault MA, Bievre CD (1999) Specific detection of Fusarium species in blood and tissues by a PCR technique. J Clin Microbiol 37: 2434-2438.
  • Joffe AZ, Palti J (1975) Taxonomic study of Fusaria of the Sporottichiella section used in recent toxicological work. Appl Microbiol 29: 575-579.
  • Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic Ascomycetes. Proc Natl Acad Sci U S A 100: 15670-15675.
  • Leslie JF, Summerell BA (2006) Fusarium culmorum (W.G. Smith) Saccardo. Morphological characters. A brief history of Fusarium taxonomy. In The Fusarium in Laboratory Manual. Leslie JF, Summerell BA eds, 1st edn, pp 81-85, 113-118, 158-159. Blackwell Publishing Professional.
  • Liu D, Coloe S, Baird R, Pederson J (2000) Rapid Mini-Preparation of Fungal DNA for PCR. J Clin Microbiol 38: 471.
  • Liu X, Zhang X, Tang WH, Chen L, Zhao XM (2013) eFG: an electronic resources for Fusarium graminearum. Database (Oxford) bat042.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Methods 25: 402-408.
  • Lysoe E, Klemsdal SS, Bone R, Frandsen RJ, Johansen T, Thrane U, Giese H (2006) The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Appl Environ Microbiol 72: 3924-3932.
  • Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5: 378-388.
  • Mule G, Logrieco A (1997) Molecular diagnosis of toxigenic Fusarium species. In Diagnosis and Identification of Plant Pathogens 213-217. Dehne H-W, Adam G, Diekman M, Frahm J, Mauler-Machnik, van Halteren P eds. Springer Netherlands, ISSN 0929-1318.
  • O'Neil CE, McCants ML, Salvaggio JE, Lehrer SB (1986) Fusarium solani: prevalence of skin reactivity and antigenic allergenic analysis. J Allergy Clin Immunol 77: 842-849.
  • Parry DW, Nicholson P (1996) Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathol 45: 383-391
  • Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Giberella fujikuroi mating population A. Fungal Genet Biol 27: 100-112.
  • Stenglein SA (2009) Fusarium poae: a pathogen that needs more attention. Plant Pathol J 91: 25-36.
  • Stepien M, Gromadzka K, Chelkowski J (2012) Polymorphism of mycotoxin biosynthetic genes among Fusarium equiseti isolates from Italy and Poland. J Appl Genet 53: 227-236.
  • Suchorzyńska M, Spera M, Misiewicz A (2009) Wykorzystanie metody PCR do identyfikacji rodzajowej szczepów Fusarium izolowanych z ziarna pszenicy. Pr Inst Lab Bad Przem Spoż 64: 57-65 (in Polish).
  • Suchorzyńska M, Misiewicz A (2009) Mikotoksynotwórcze grzyby fitopatogeniczne z rodzaju Fusarium i ich wykrywanie technikami PCR. Post Mikrobiol 48: 221-230 (in Polish).
  • Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomica era. Plant Physiol 149: 103-110.
  • Yli-Mattila T (2010) Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. Plant Pathol J 92: 7-18.
  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, Nell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotosin gene luster of phytopathogenic Fusarium. Proc Natl Acad Sci USA 99: 9278.
  • Zhao C, Waalwijk C, de Wit PJ, Tang D, van der Lee T (2014) Relocation of genes generates non-conserved chromosomal segments in Fusarium graminearum that show distinct and co-regulated gene expression patterns. BMC Genomics 15: 191.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p97kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.