PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 737-744
Article title

New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure

Content
Title variants
Languages of publication
EN
Abstracts
EN
RNAComposer is a fully automated, web-interfaced system for RNA 3D structure prediction, freely available at http://rnacomposer.cs.put.poznan.pl/ and http://rnacomposer.ibch.poznan.pl/. Its main components are: manually curated database of RNA 3D structure elements, highly efficient computational engine and user-friendly web application. In this paper, we demonstrate how the latest additions to the system allow the user to significantly affect the process of 3D model composition on several computational levels. Although in general our method is based on the knowledge of secondary structure topology, currently the RNAComposer offers a choice of six incorporated programs for secondary structure prediction. It also allows to apply a conditional search in the database of 3D structure elements and introduce user-provided elements into the final 3D model. This new functionality contributes to a significant improvement of the predicted 3D model reliability and it facilitates a better model adjustment to the experimental data. This is exemplified based on the RNAComposer application for modelling of the 3D structures of precursors of the miR160 family members.
Publisher

Year
Volume
63
Issue
4
Pages
737-744
Physical description
Dates
published
2016
received
2016-05-30
revised
2016-06-22
accepted
2016-07-25
(unknown)
2016-10-14
Contributors
  • Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
author
  • Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznań, Poland
  • Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland; Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznań, Poland
References
  • Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA (2014) Multifunctional RNA nanoparticles. Nano Letters 14: 5662-56671. https://doi.org/10.1021/nl502385k.
  • Antczak M, Zok T, Popenda M, Lukasiak P, Adamiak RW, Blazewicz J, Szachniuk M (2015) RNApdbee - a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs. Nucleic Acids Res 42: W368-W372. https://doi.org/10.1093/nar/gku330.
  • Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12: 221. https://doi.org/10.1186/gb-2011-12-4-221.
  • Bartel DP (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116: 281-297.
  • Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro BA, Dinman JD (2014) Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512: 265-269. https://doi.org/10.1038/nature13429.
  • Biesiada M, Pachulska-Wieczorek K, Adamiak RW, Purzycka KJ (2016) RNAComposer and RNA 3D structure prediction for nanotechnology. Methods https://doi.org/10.1016/j.ymeth.2016.03.010.
  • Blazewicz J, Szachniuk M, Wojtowicz A (2005) RNA tertiary structure determination: NOE pathway construction by tabu search. Bioinformatics 21: 2356-2361. https://doi.org/10.1093/bioinformatics/bti351.
  • Blazewicz J, Figlerowicz M, Kasprzak M, Nowacka M, Rybarczyk A (2011) RNA partial degradation problem: motivation, complexity, algorithm. J Comput Biol 18: 821-834. https://doi.org/10.1089/cmb.2010.0153.
  • Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 23: 1675-1689. https://doi.org/10.1101/gr.153387.112.
  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 1185-1190. https://doi.org/10.1126/science.1159151.
  • Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz KM, Monard G, Needham P, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Salomon-Ferrer R, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, York DM, Kollman PA (2015) AMBER 2015, University of California, San Francisco.
  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci 107: 15269-15274. https://doi.org/10.1073/pnas.1001738107.
  • Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE (2015) Structural Analysis of Multi-Helical RNAs by NMR-SAXS/WAXS: Application to the U4/U6 di-snRNA. J Mol Biol 428: 777-789. https://doi.org/10.1016/j.jmb.2015.11.026.
  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17: 997-1003. https://doi.org/10.1038/nsmb.1866.
  • Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without energy-based models. Bioinformatics 22: e90-e98. https://doi.org/10.1093/bioinformatics/btl246.
  • Dror O, Nussinov R, Wolfson HJ (2006) The ARTS web server for aligning RNA tertiary structures. Nucleic Acids Res 34: W412-W415. https://doi.org/10.1093/nar/gkl312.
  • Du Z, Lee JK, Tjhen R, Stroud RM, James TL (2008) Structural and biochemical insights into the dicing mechanism of mouse Dicer: A conserved lysine is critical for dsRNA cleavage. Proc Natl Acad Sci 105: 2391-2396. https://doi.org/10.1073/pnas.0711506105.
  • Dufour D, Marti-Renom MA (2015) Software for predicting the 3D structure of RNA molecules. Wiley Interdiscip Rev Comput Mol Sci 5: 56-61. https://doi.org/10.1002/wcms.1198.
  • Felden B (2007) RNA structure: experimental analysis. Curr Opin Microbiol 10: 286-291. https://doi.org/10.1016/j.mib.2007.05.001.
  • Feng Y, Zhang X, Graves P, Zeng Y (2012) A comprehensive analysis of precursor microRNA cleavage by human Dicer. RNA 18: 2083-2092. https://doi.org/10.1261/rna.033688.112.
  • Gabryelska MM, Wyszko E, Szymanski M, Popenda M, Barciszewski J (2013) Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint. Biochem J 451: 439-451. https://doi.org/10.1042/BJ20121761.
  • Galka-Marciniak P, Olejniczka M, Starega-Roslan J, Szczesniak MW, Makalowska I, Krzyzosiak WJ (2016) siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. Biochim Biophys Acta 1859: 639-649. https://doi.org/10.1016/j.bbagrm.2016.02.014.
  • Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2006) Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124: 355-366. https://doi.org/10.1016/j.cell.2005.11.034.
  • Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X (2008) A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 67: 143-154. https://doi.org/10.1111/j.1365-2958.2007.06032.x.
  • Gupta A, Swati D (2016) Hammerhead ribozymes in archaeal genomes: a computational hunt. Interdiscip Sci https://doi.org/10.1007/s12539-016-0141-3.
  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex Cell. Cell 125: 887-901. https://doi.org/10.1016/j.cell.2006.03.043.
  • Höchsmann M (2005) The tree alignment model: algorithms, implementations and applications for the analysis of RNA secondary structures. Bielefeld University. PhD Thesis.
  • Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293: 834-838. https://doi.org/10.1126/science.1062961.
  • Jones CP, Cantara WA, Olson ED, Musier-Forsyth K (2014) Small-angle X-ray scattering-derived structure of the HIV-1 5' UTR reveals 3D tRNA mimicry. Proc Natl Acad Sci USA 111: 3395-400. https://doi.org/10.1073/pnas.1319658111.
  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42: D68-D73. https://doi.org/10.1093/nar/gkt1181.
  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101: 12753-12758. https://doi.org/10.1073/pnas.0403115101.
  • Kwon S, Nguyen T, Choi YG, Jo M, Hohng S, Kim V, Woo JS (2016) Structure of Human DROSHA. Cell 164: 81-90. https://doi.org/10.1016/j.cell.2015.12.019.
  • Lavery R, Moakher M, Maddocks JH, Petkeviciute D, Zakrzewska K (2009) Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res 37: 5917-5929 https://doi.org/10.1093/nar/gkp608.
  • Lee WC, Lu SH, Lu MH, Yang CJ, Wu SH, Chen HM (2015) Asymmetric bulges and mismatches determine 20-nt microRNA formation in plants. RNA Biology 12: 1054-1066. https://doi.org/10.1080/15476286.2015.1079682.
  • Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6: 26. https://doi.org/10.1186/1748-7188-6-26.
  • Lisowiec J, Magner D, Kierzek E, Lenartowicz E, Kierzek R (2015) Structural determinants for alternative splicing regulation of the MAPT pre-miRNA. RNA Biology 12: 330-342. https://doi.org/10.1080/15476286.2015.1017214.
  • Liu C, Axtell MJ, Fedoroff NV (2012) The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. Plant Physiol 159: 748-58. https://doi.org/10.1104/pp.112.193508.
  • Lu X, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31: 5108-5121. https://doi.org/10.1093/nar/gkg680.
  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311: 195-198. https://doi.org/10.1126/science.1121638.
  • MacRae IJ, Doudna JA (2007) An unusual case of pseudo-merohedral twinning in orthorhombic crystals of Dicer. Acta Crystallogr D Biol Crystallogr 63: 993-999. https://doi.org/10.1107/S0907444907036128.
  • MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17: 138-145. https://doi.org/10.1016/j.sbi.2006.12.002.
  • Manavella PA, Koenig D, Weigel D (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA 109: 2461-2466. https://doi.org/10.1073/pnas.1200169109.
  • Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a Precursor. Curr Biol 20: 49-54. https://doi.org/10.1016/j.cub.2009.10.072.
  • Miao Z, Adamiak RW, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ, Cheng C, Chojnowski G, Chou FC, Cordero P, Cruz JA, Ferre-D'Amare A, Das R, Ding F, Dokholyan NV, Dunin-Horkawicz S, Kladwang W, Krokhotin A, Lach G, Magnus M, Major F, Mann TH, Masquida B, Matelska D, Meyer M, Peselis A, Popenda M, Purzycka KJ, Serganov A, Stasiewicz J, Szachniuk M, Tandon A, Tian S, Wang J, Xiao Y, Xu X, Zhang J, Zhao P, Zok T, Westhof E (2015) RNA-Puzzles Round II: Assessment of RNA structure prediction programs applied to three large RNA structures. RNA 21: 1066-1084. https://doi.org/10.1261/rna.049502.114.
  • Mickiewicz A, Rybarczyk A, Sarzynska J, Figlerowicz M, Blazewicz J (2016) AmiRNA Designer - new method of artificial miRNA design. Acta Biochim Pol 63: 71-77. https://doi.org/10.18388/abp.2015_989.
  • Nicholson AW (2014) Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdisciplinary Reviews: RNA 5: 31-48. https://doi.org/10.1002/wrna.1195.
  • Nishida Y, Pachulska-Wieczorek K, Blaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ (2015) Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Res 43: 7414-7431. https://doi.org/10.1093/nar/gkv695.
  • Nowacka M, Jackowiak P, Rybarczyk A, Magacz T, Strozycki PM, Barciszewski J, Figlerowicz M (2012) 2D-PAGE as an effective method of RNA degradome analysis. Mol Biol Rep 39: 139-146. https://doi.org/10.1007/s11033-011-0718-1.
  • Pawlowska R, Janicka M, Jedrzejczyk D, Chworos A (2016) RNA fragments mimicking tRNA analogs interact with cytochrome c. Mol Biol Rep 43: 295-304. https://doi.org/10.1007/s11033-016-3954-6.
  • Peschek J, Acosta-Alvear D, Mendez AS, Walter P (2015) A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing. EMBO Reports 16: 1688-1698. https://doi.org/10.15252/embr.201540955.
  • Popenda M, Blazewicz M, Szachniuk M, Adamiak RW (2008) RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures. Nucleic Acids Res 36: D386-D391. https://doi.org/10.1093/nar/gkm786.
  • Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40: e112. https://doi.org/10.1093/nar/gks339.
  • Purzycka KJ, Garfinkel DJ, Boeke JD, Le Grice SF (2013) Influence of RNA structural elements on Ty1 retrotransposition. Mob Genet Elements 3: e25060. https://doi.org/10.4161/mge.25060.
  • Purzycka KJ, Popenda M, Szachniuk M, Antczak M, Lukasiak P, Blazewicz J, Adamiak RW (2014) Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Methods in Enzymology: Computational Methods for Understanding Riboswitches 553: 3-34. https://doi.org/10.1016/bs.mie.2014.10.050.
  • Puton T, Kozlowski LP, Rother KM, Bujnicki JM (2013) CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res 41: 4307-4323. https://doi.org/10.1093/nar/gkt101.
  • Rausch JW, Le Grice SF (2015) HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective. Viruses 7: 3053-3075. https://doi.org/10.3390/v7062760.
  • Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 129. https://doi.org/10.1186/1471-2105-11-129.
  • Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young B, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39: D392-D401. https://doi.org/10.1093/nar/gkq1021.
  • Rybarczyk A, Szostak N, Antczak M, Zok T, Popenda M, Adamiak RW, Blazewicz J, Szachniuk M (2015) New in silico approach to assessing RNA secondary structures with non-canonical base pairs. BMC Bioinformatics 16: 276. https://doi.org/10.1186/s12859-015-0718-6.
  • Sato K, Hamada M, Asai K, Mituyama T (2009) CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res 37: W277-80. https://doi.org/10.1093/nar/gkp367.
  • Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27: i85-i93. https://doi.org/10.1093/bioinformatics/btr215.
  • Schrödinger, LLC (2016) The PyMOL Molecular Graphics System, Version 1.8.
  • Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20: 37-41. https://doi.org/10.1016/j.cub.2009.10.076.
  • Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ (2011) The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 68: 2859-2871. https://doi.org/10.1007/s00018-011-0726-2.
  • Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, Krzyzosiak WJ (2011) Structural basis of microRNA length variety. Nucleic Acids Res 39: 257-268. https://doi.org/10.1093/nar/gkq727.
  • Szostak N, Royo F, Rybarczyk A, Szachniuk M, Blazewicz J, del Sol A, Falcon-Perez JM (2014) Sorting signal targeting mRNA into hepatic extracellular vesicles. RNA Biol 11: 836-844. https://doi.org/10.4161/rna.29305.
  • Takeshita D, Zenno S, Lee WC, Nagata K, Saigo K, Tanokura M (2007) Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human Dicer. J Mol Biol 374: 106-120. https://doi.org/10.1016/j.jmb.2007.08.069.
  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687. https://doi.org/10.1016/j.cell.2009.01.046.
  • Wende S, Platzer ED, Jühling F, Pütz J, Florentz C, Stadler PF, Mörl M (2014) Biological evidence for the world's smallest tRNAs. Biochimie 100: 151-158. https://doi.org/10.1016/j.biochi.2013.07.034.
  • Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Current Biology 20: 42-48. https://doi.org/10.1016/j.cub.2009.10.073.
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biol 11: 228-234. https://doi.org/10.1038/ncb0309-228.
  • Yatime L, Maasch C, Hoehlig K, Klussmann S, Andersen GR, Vater A (2015) Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer. Nat Commun 6: 6481. https://doi.org/10.1038/ncomms7481.
  • Zakov S, Goldberg Y, Elhadad M, Ziv-Ukelson M (2011) Rich parameterization improves RNA structure prediction. J Comput Biol 18: 1525-1542. https://doi.org/10.1089/cmb.2011.0184.
  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118: 57-68. https://doi.org/10.1016/j.cell.2004.06.017.
  • Zok T, Popenda M, Szachniuk M (2014) MCQ4Structures to compute similarity of molecule structures. Central Eur J Operations Res 22: 457-474. https://doi.org/10.1007/s10100-013-0296-5.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p737kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.