PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 717-723
Article title

MicroRNA biogenesis: Epigenetic modifications as another layer of complexity in the microRNA expression regulation

Content
Title variants
Languages of publication
EN
Abstracts
EN
Since their discovery, microRNAs have led to a huge shift in our understanding of the regulation of key biological processes. The discovery of epigenetic modifications that affect microRNA expression has added another layer of complexity to the already tightly controlled regulatory machinery. Modifications like uridylation, adenylation and RNA editing have been shown to have variable effects on miRNA biogenesis and action. Methylation of the N6 adenosine has been studied extensively in mRNA. Presence of the N6-methyl-adenosine (m6A) mark and its critical importance in miRNA biogenesis in animals adds to our understanding of the regulatory mechanisms, while its effect on miRNA biogenesis in plants is yet to be understood.
Publisher

Year
Volume
63
Issue
4
Pages
717-723
Physical description
Dates
published
2016
received
2016-06-09
revised
2016-06-30
accepted
2016-07-28
(unknown)
2016-11-22
Contributors
author
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
References
  • Agranat-Tamir L, Shomron N, Sperling J, Sperling R (2014) Interplay between pre-mRNA splicing and microRNA biogenesis within the supraspliceosome. Nucleic Acids Res 42: 4640-4651. https://doi.org/10.1093/nar/gkt1413.
  • Alaba S, Piszczalka P, Pietrykowska H, Pacak AM, Sierocka I, Nuc PW, Singh K, Plewka P, Sulkowska A, Jarmolowski A, Karlowski WM (2014) The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytologist 206: 352-367. https://doi.org/10.1111/nph.13220.
  • Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015) HNRNPA2B1 Is a mediator of m6A-dependent nuclear RNA processing events. Cell 162: 1299-1308. http:// https://doi.org/10.1016/j.cell.2015.08.011.
  • Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519: 482-485. https://doi.org/10.1038/nature14281.
  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microrna and its APETALA2-like target genes. Plant Cell 15: 2730-2741. https://doi.org/10.1105/tpc.016238.
  • Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12: 221. https://doi.org/10.1186/gb-2011-12-4-221.
  • Backes S, Shapiro JS, Sabin LR, Pham AM, Reyes I, Moss B, Cherry S (2012) Degradation of host microRNAs by poxvirus poly (A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 12: 200-210. https://doi.org/10.1016/j.chom.2012.05.019.
  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553-563. https://doi.org/10.1016/j.cell.2005.07.031.
  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Nat Acad Sci 102: 11928-11933. https://doi.org/10.1073/pnas.0505461102.
  • Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B (2015) N6-adenosine methylation in MiRNAs. PLoS ONE 10: e0118438. https://doi.org/10.1371/journal.pone.0118438.
  • Bielewicz D, Kalak M, Kalyna M, Windels D, Barta A, Vazquez F, Szweykowska-Kulinska Z, Jarmolowski A (2013) Introns of plant pri-miRNAs enhance miRNA biogenesis. EMBO Reports 14: 622-628. https://doi.org/10.1038/embor.2013.62.
  • Bodi Z, Button JD, Grierson D, Fray RG (2010) Yeast targets for mRNA methylation. Nucleic Acids Res 38: 5327-5335. https://doi.org/10.1093/nar/gkq266.
  • Bodi Z, Zhong S, Mehra S, Song J, Graham N, Li H, May S, Fray RG (2012) Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects. Front Plant Sci 3: 48. https://doi.org/10.3389/fpls.2012.00048.
  • Bokar JA (2005) The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. Topics Curr Genet141-177. https://doi.org/10. 1007/b106365
  • Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269: 17697-17704.
  • Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3: 1233-1247.
  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13: 1097-1101. https://doi.org/10.1038/nsmb1167.
  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642-655. https://doi.org/10.1016/j.cell.2009.01.035.
  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21: 452-460. https://doi.org/10.1016/j.ceb.2009.04.009.
  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579: 5923-5931. https://doi.org/10.1016/j.febslet.2005.07.071.
  • Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30: 4509-4518. https://doi.org/10.1093/nar/gkf573.
  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231-235. https://doi.org/10.1038/nature03049.
  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132: 9-14. https://doi.org/10.1016/j.cell.2007.12.024.
  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15: 21-32. https://doi.org/10.1261/rna.1399509.
  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17: 818-823. https://doi.org/10.1016/j.cub.2007.04.005.
  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102-114. https://doi.org/10.1038/nrg2290.
  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26: 941-946. https://doi.org/10.1038/nbt1417.
  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15: 509-524. https://doi.org/10.1038/nrm3838.
  • Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16: 1021-1025. https://doi.org/10.1038/nsmb.1676.
  • Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32: 276-284. https://doi.org/10.1016/j.molcel.2008.09.014.
  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12: 99-110. https://doi.org/10.1038/nrg2936.
  • Hussain MU (2012) Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res 349: 405-413. https://doi.org/10.1007/s00441-012-1438-0.
  • Jia G, Fu Y, He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29: 108-115. https://doi.org/10.1016/j.tig.2012.11.003.
  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7: 885-887. https://doi.org/10.1038/nchembio.687.
  • Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara SI, Baba T, Suzuki T (2009) Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2. Genes Dev 23: 433-438. https://doi.org/10.1101/gad.1761509.
  • Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8: 763-769. https://doi.org/10.1038/sj.embor.7401011.
  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315: 1137-1140. https://doi.org/10.1126/science.1138050.
  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376-385. https://doi.org/10.1038/nrm1644.
  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126-139. https://doi.org/10.1038/nrm2632.
  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597-610. https://doi.org/10.1038/nrg2843.
  • Kruszka K, Pacak A, Swida-Barteczka A, Stefaniak AK, Kaja E, Sierocka I, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2013) Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genomics 14: 34. https://doi.org/10.1186/1471-2164-14-34.
  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12: 206-212. https://doi.org/10.1261/rna.2146906.
  • Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Rätsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105: 8795-8800. https://doi.org/10.1073/pnas.0802493105.
  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. https://doi.org/10.1016/0092-8674(93)90529-y.
  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419. https://doi.org/10.1038/nature01957.
  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115: 787-798. https://doi.org/10.1016/s0092-8674(03)01018-3.
  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15: 1501-1507. https://doi.org/10.1016/j.cub.2005.07.029.
  • Li Y, Kowdley KV (2012) MicroRNAs in common human diseases.Genomics Proteomics Bioinformatics 10: 246-253. https://doi.org/10.1016/j.gpb.2012.07.005.
  • Lu S, Sun YH, Chiang VL (2009) Adenylation of plant miRNAs. Nucleic Acids Res 37: 1878-1885. https://doi.org/10.1093/nar/gkp031.
  • Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, Lu Z, Liu J, Chen K, Jia G, Bergelson J, He C (2014) Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun 5: 5630. https://doi.org/10.1038/ncomms6630.
  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci 104: 9667-9672. https://doi.org/10.1073/pnas.0703820104.
  • Mattioli C, Pianigiani G, Pagani F (2014) Cross talk between spliceosome and microprocessor defines the fate of pre-mRNA. Wiley Interdiscip Rev RNA 5: 647-658. https://doi.org/10.1002/wrna.1236.
  • Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435: 745-746. https://doi.org/10.1038/435745a.
  • Merchan F, Boualem A, Crespi M, Frugier F (2009) Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol 10: R136. https://doi.org/10.1186/gb-2009-10-12-r136.
  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149: 1635-1646. https://doi.org/10.1016/j.cell.2012.05.003.
  • Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Functional & Integrative Genomics 5: 129-135. https://doi.org/10.1007/s10142-005-0145-2.
  • Pan T (2013) N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 38: 204-209. https://doi.org/10.1016/j.tibs.2012.12.006.
  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102: 3691-3696. https://doi.org/10.1073/pnas.0405570102.
  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19: 421-428. https://doi.org/10.1016/j.molcel.2005.06.014.
  • Reinhart BJ, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906. https://doi.org/10.1038/35002607.
  • Ren G, Chen X, Yu B (2012) Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol 22: 695-700. https://doi.org/10.1016/j.cub.2012.02.052.
  • Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115: 695-714. https://doi.org/10.1016/0022-2836(77)90110-3.
  • Schnall-Levin M, Zhao Y, Perrimon N, Berger B (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3' UTRs. Proc Natl Acad Sci 107: 15751-15756. https://doi.org/10.1073/pnas.1006172107.
  • Schwab R, Speth C, Laubinger S, Voinnet O (2013) Enhanced microRNA accumulation through stemloop-adjacent introns. EMBO Rep 14: 615-621. https://doi.org/10.1038/embor.2013.58.
  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16: 2001-2019. https://doi.org/10.1105/tpc.104.022830.
  • Szarzynska B, Sobkowiak L, Pant BD, Balazadeh S, Scheible WR, Mueller-Roeber B, Jarmolowski A, Szweykowska-Kulinska Z (2009) Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res 37: 3083-3093. https://doi.org/10.1093/nar/gkp189.
  • Szweykowska-Kulinska Z, Jarmolowski A, Vazquez F (2013) The crosstalk between plant microRNA biogenesis factors and the spliceosome. Plant Signaling Behavior 8: e26955. https://doi.org/10.4161/psb.26955.
  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124-1128. https://doi.org/10.1038/nature07299.
  • Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thrombosis Haemostasis 107: 605-610. https://doi.org/10.1160/th11-12-0836.
  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 1187-1197. https://doi.org/10.1101/gad.1201404.
  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14: 346-351. https://doi.org/10.1016/j.cub.2004.01.035.
  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687. https://doi.org/10.1016/j.cell.2009.01.046.
  • Wei CM, Gershowitz A, Moss B (1976) 5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 15: 397-401. https://doi.org/10.1021/bi00647a024.
  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862. https://doi.org/10.1016/0092-8674(93)90530-4.
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228-234. https://doi.org/10.1038/ncb0309-228.
  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138: 2145-2154. https://doi.org/10.1104/pp.105.062943.
  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13: 13-21. https://doi.org/10.1038/nsmb1041.
  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594-596. https://doi.org/10.1126/science.1097434.
  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011-3016. https://doi.org/10.1101/gad.1158803.
  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307: 932-935. https://doi.org/10.1126/science.1107130.
  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci 100: 9779-9784. https://doi.org/10.1073/pnas.1630797100.
  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49: 18-29. https://doi.org/10.1016/j.molcel.2012.10.015.
  • Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG (2008) MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. The Plant Cell 20: 1278-1288. https://doi.org/10.1105/tpc.108.058883.
  • Reinhart BJ, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906.
  • Ren G, Chen X, Yu B (2012) Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol 22: 695-700.
  • Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115: 695-714.
  • Schnall-Levin M, Zhao Y, Perrimon N, Berger B (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3' UTRs. Proc Natl Acad Sci 107: 15751-15756.
  • Schwab R, Speth C, Laubinger S, Voinnet O (2013) Enhanced microRNA accumulation through stemloop-adjacent introns. EMBO Reports 14: 615-621.
  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16: 2001-2019.
  • Szarzynska B, Sobkowiak L, Pant BD, Balazadeh S, Scheible WR, Mueller-Roeber B, Jarmolowski A, Szweykowska-Kulinska Z (2009) Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res 37: 3083-93. https://doi.org/10.1093/nar/gkp189.
  • Szweykowska-Kulinska Z, Jarmolowski A, Vazquez F (2013) The crosstalk between plant microRNA biogenesis factors and the spliceosome. Plant Signaling Behavior 8: e26955.
  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124-1128.
  • Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thrombosis Haemostasis 107: 605.
  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18: 1187-1197.
  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14: 346-351.
  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687.
  • Wei CM, Gershowitz A, Moss B (1976) 5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 15: 397-401.
  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862.
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228-234.
  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138: 2145-2154.
  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13: 13-21.
  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594-596.
  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011-3016.
  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307: 932-935.
  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci 100: 9779-9784.
  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49: 18-29.
  • Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG (2008) MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. The Plant Cell 20: 1278-1288.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p717kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.