PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 675-680
Article title

A regulatory function of long non-coding RNAs in red blood cell development

Content
Title variants
Languages of publication
EN
Abstracts
EN
In recent years it has been discovered that long non-coding RNAs are important regulators in many biological processes. In this review, we summarize the role of lncRNA in erythropoiesis. lncRNA are crucial for regulation of gene expression during both, proliferation and differentiation stages of red blood cell development. Many are regulated by erythroid-specific transcription factors and some are expressed in a developmental stage-specific manner. The majority of individually studied lncRNAs are involved in regulating the terminal maturation stages of red cell differentiation. Their regulatory function is accomplished by various mechanisms, including direct regulation in cis or trans by the lncRNA product or by the cis-localized presence of the lncRNA transcription itself. These add additional levels of regulation of gene expression during erythropoiesis.
Publisher

Year
Volume
63
Issue
4
Pages
675-680
Physical description
Dates
published
2016
received
2016-06-03
revised
2016-07-24
accepted
2016-08-15
(unknown)
2016-11-17
Contributors
  • Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
  • Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
References
  • Alper SL (2009) Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 212: 1672-1683. https://doi.org/10.1242/jeb.029454.
  • Alvarez-Dominguez JR, Hu W, Yuan B, Shi J, Park SS, Gromatzky AA, Van Oudenaarden A, Lodish HF (2014) Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 123: 570-581. https://doi.org/10.1182/blood-2013-10-530683.
  • An X, Mohandas N (2011) Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93: 139-143. https://doi.org/10.1007/s12185-011-0779-x.
  • Arriaga-Canon C, Fonseca-Guzmán Y, Valdes-Quezada C, Arzate-Mejía R, Guerrero G, Recillas-Targa F (2014) A long non-coding RNA promotes full activation of adult gene expression in the chicken α-globin domain. Epigenetics 9: 173-181. https://doi.org/10.4161/epi.27030.
  • Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ (1997) Intergenic transcription and transinduction of the human beta -globin locus. Genes Dev 11: 2494-2509. https://doi.org/10.1101/gad.11.19.2494.
  • Barker JE (1968) Development of the mouse hematopoietic system. Dev Biol 18: 14-29. https://doi.org/10.1016/0012-1606(68)90020-1.
  • Batista PJ, Chang HY (2013) Long noncoding RNAs: Cellular address codes in development and disease. Cell 152: 1298-1307. https://doi.org/10.1016/j.cell.2013.02.012.
  • Bender M, Bulger M, Close J, Groudine M (2000) β-globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol Cell 5: 387-393. https://doi.org/10.1016/S1097-2765(00)80433-5.
  • Gavrilov AA, Razin SV (2008) Spatial configuration of the chicken -globin gene domain: immature and active chromatin hubs. Nucleic Acids Res 36: 4629-4640. https://doi.org/10.1093/nar/gkn429.
  • Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P (2000) Intergenic Transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol Cell 5: 377-386. https://doi.org/10.1016/S1097-2765(00)80432-3.
  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482: 339-346. https://doi.org/10.1038/nature10887.
  • Homma N, Takei Y, Tanaka Y, Nakata T, Terada S, Kikkawa M, Noda Y, Hirokawa N (2003) Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114: 229-239. https://doi.org/10.1016/S0092-8674(03)00522-1.
  • Hu W, Yuan B, Flygare J, Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 25: 2573-2578. https://doi.org/10.1101/gad.178780.111.
  • Ji P, Lodish HF (2010) Rac GTPases play multiple roles in erythropoiesis. Haematologica 95: 2-4. https://doi.org/10.3324/haematol.2009.015511.
  • Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R (2010) The DLEU2/miR-15a/16-1 cluster controls b cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17: 28-40. https://doi.org/10.1016/j.ccr.2009.11.019.
  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193: 651-669. https://doi.org/10.1534/genetics.112.146704.
  • Lawrie CH (2009) microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol 150: 144-151. https://doi.org/10.1111/j.1365-2141.2009.07978.x.
  • Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D, Corcoran MM (2009) DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 315: 2941-2952. https://doi.org/10.1016/j.yexcr.2009.07.001.
  • Ling J, Ainol L, Zhang L, Yu X, Pi W, Tuan D (2004) HS2 Enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem 279: 51704-51713. https://doi.org/10.1074/jbc.M404039200.
  • Ling J, Baibakov B, Pi W, Emerson BM, Tuan D (2005) The HS2 enhancer of the β-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J Mol Biol 350: 883-896. https://doi.org/10.1016/j.jmb.2005.05.039.
  • Listowski M, Heger E, Bogusławska D, Machnicka B, Kuliczkowski K, Leluk J, Sikorski A (2013) microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett 18: 34-46. https://doi.org/10.2478/s11658-012-0038-z.
  • Lu J, Getz G, Miska E a, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando A a, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435: 834-838. https://doi.org/10.1038/nature03702.
  • Manwani D, Bieker JJ (2008) The Erythroblastic Island. Curr Top Dev Biol 82: 23-53. https://doi.org/10.1016/S0070-2153(07)00002-6.
  • Miller IJ, Bieker JJ (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol 13: 2776-2786. https://doi.org/10.1128/MCB.13.5.2776.
  • Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, Frampton GM, Drake AC, Leskov I, Nilsson B, Preffer F, Dombkowski D, Evans JW, Liefeld T, Smutko JS, Chen J, Friedman N, Young RA, Golub TR, Regev A, Ebert BL (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144: 296-309. https://doi.org/10.1016/j.cell.2011.01.004.
  • Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F (1995) Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375: 316-318. https://doi.org/10.1038/375316a0.
  • Ohtsuka T, Ryu H, Minamishima Y a, Macip S, Sagara J, Nakayama KI, Aaronson S A, Lee SW (2004) ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nature Cell Biol 6: 121-128. https://doi.org/10.1038/ncb1087.
  • Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132: 631-644. https://doi.org/10.1016/j.cell.2008.01.025.
  • Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5: 3. https://doi.org/10.3389/fphys.2014.00003.
  • Paralkar VR, Mishra T, Luan J, Yao Y, Kossenkov A V., Anderson SM, Dunagin M, Pimkin M, Gore M, Sun D, Konuthula N, Raj A, An X, Mohandas N, Bodine DM, Hardison RC, Weiss MJ (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123: 1927-1937. https://doi.org/10.1182/blood-2013-12-544494.
  • Paralkar VR, Weiss MJ (2011a) A new 'Linc' between noncoding RNAs and blood development. Genes Dev 25: 2555-2558. https://doi.org/10.1101/gad.183020.111.
  • Paralkar VR, Weiss MJ (2011b) A new 'Linc' between noncoding RNAs and blood development. Genes Dev 25: 2555-2558. https://doi.org/10.1101/gad.183020.111.
  • Perkins AC, Sharpe AH, Orkin SH (1995) Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375: 318-322. https://doi.org/10.1038/375318a0.
  • Ponting C, Schultz J, Bork P (1997) SPRY domains in ryanodine receptors (Ca2+-release channels). Trends Biochem Sci 22: 193-194. https://doi.org/10.1016/S0968-0004(97)01049-9.
  • Rinn JL, Chang HY (2012) Genome Regulation by Long Noncoding RNAs. Annu Rev Biochem 81: 145-166. https://doi.org/10.1146/annurev-biochem-051410-092902.
  • Sánchez-López JY, Camacho-Torres AL, Ibarra B, Tintos JA, Perea FJ (2010) Analysis of the SLC4A1 gene in three Mexican patients with hereditary spherocytosis: report of a novel mutation. Genet Mol Biol 33: 9-11. https://doi.org/10.1590/S1415-47572009005000109.
  • Siatecka M, Bieker JJ (2011) The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 118: 2044-2054. https://doi.org/10.1182/blood-2011-03-331371.
  • Sun L, Zhang Z, Bailey TL, Perkins AC, Tallack MR, Xu Z, Liu H (2012) Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinformatics 13: 331. https://doi.org/10.1186/1471-2105-13-331.
  • Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G (2013) Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol 202: 623-636. https://doi.org/10.1083/jcb.201302123.
  • Villamizar O, Chambers CB, Mo YY, Torry DS, Hofstrand R, Riberdy JM, Persons DA, Wilber A (2016a) Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death. Blood Cells Mol Dis 58: 57-66. https://doi.org/10.1016/j.bcmd.2016.03.002.
  • Villamizar O, Chambers CB, Mo YY, Torry DS, Hofstrand R, Riberdy JM, Persons DA, Wilber A (2016b) Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death. Blood Cells Mol Dis 58: 57-66. https://doi.org/10.1016/j.bcmd.2016.03.002.
  • Wang C, Wu X, Shen F, Li Y, Zhang Y, Yu D (2015) Shlnc-EC6 regulates murine erythroid enucleation by Rac1-PIP5K pathway. Dev Growth Differ 57: 466-473. https://doi.org/10.1111/dgd.12225.
  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43: 904-914. https://doi.org/10.1016/j.molcel.2011.08.018.
  • Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579: 5911-5922. https://doi.org/10.1016/j.febslet.2005.07.070.
  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23: 1494-1504. https://doi.org/10.1101/gad.1800909.
  • Yan MD (2005) Identification and characterization of a novel gene Saf transcribed from the opposite strand of Fas. Hum Mol Genet 14: 1465-1474. https://doi.org/10.1093/hmg/ddi156.
  • Zhao G, Yu D, Weiss MJ (2010) MicroRNAs in erythropoiesis. Curr Opin Hematol 17: 155-162. https://doi.org/10.1097/MOH.0b013e328337ba6c.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p675kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.