PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 665-673
Article title

Biological functions of natural antisense transcripts

Content
Title variants
Languages of publication
EN
Abstracts
EN
Natural antisense transcripts (NATs) are RNA molecules that originate from opposite DNA strands of the same genomic locus (cis-NAT) or unlinked genomic loci (trans-NAT). NATs may play various regulatory functions at the transcriptional level via transcriptional interference. NATs may also regulate gene expression levels post-transcriptionally via induction of epigenetic changes or double-stranded RNA formation, which may lead to endogenous RNA interference, RNA editing or RNA masking. The true biological significance of the natural antisense transcripts remains controversial despite many years of research. Here, we summarize the current state of knowledge and discuss the sense-antisense overlap regulatory mechanisms and their potential.
Year
Volume
63
Issue
4
Pages
665-673
Physical description
Dates
published
2016
received
2016-06-03
revised
2016-06-24
accepted
2016-06-25
(unknown)
2016-10-21
References
  • Alt FW, Zhang Y, Meng FL, Guo C, Schwer B (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152: 417-429. https://doi.org/10.1016/j.cell.2013.01.007.
  • Annilo T, Kepp K, Laan M (2009) Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol Biol 10: 81. https://doi.org/10.1186/1471-2199-10-81.
  • Barrell BG, Air GM, Hutchison CA 3rd (1976) Overlapping genes in bacteriophage phiX174. Nature 264: 34-41.
  • Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11: 1164-1178. https://doi.org/10.5114/aoms.2015.56342.
  • Beavon IR (2000) The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer 36: 1607-1620.
  • Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22: 756-769. https://doi.org/10.1101/gad.455708.
  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123: 1279-1291. https://doi.org/10.1016/j.cell.2005.11.035.
  • Bovre K, Szybalski W (1969) Patterns of convergent and overlapping transcription within the b2 region of coliphage lambda. Virology 38: 614-626.
  • Brophy JA, Voigt CA (2016) Antisense transcription as a tool to tune gene expression. Mol Syst Biol 12: 854. https://doi.org/10.15252/msb.20156540.
  • Celton JM, Gaillard S, Bruneau M, Pelletier S, Aubourg S, Martin-Magniette ML, Navarro L, Laurens F, Renou JP (2014) Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol 203: 287-299. https://doi.org/10.1111/nph.12787.
  • Cha J, Zhou M, Liu Y (2015) Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view. Biochemistry 54: 150-156. https://doi.org/10.1021/bi5005624.
  • Chaligne R, Heard E (2014) X-chromosome inactivation in development and cancer. FEBS Lett 588: 2514-2522. https://doi.org/10.1016/j.febslet.2014.06.023.
  • Chan WL, Yuo CY, Yang WK, Hung SY, Chang YS, Chiu CC, Yeh KT, Huang HD, Chang JG (2013) Transcribed pseudogene ψPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res 41: 3734-3747. https://doi.org/10.1093/nar/gkt047.
  • Charles Richard JL, Ogawa Y (2016) Understanding the complex circuitry of lncRNAs at the X-inactivation center and its implications in disease conditions. Curr Top Microbiol Immunol 394: 1-27. https://doi.org/10.1007/82_2015_443.
  • Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, Zhou G, Shi RZ, Rowley JD (2004) Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res 32: 4812-4820. https://doi.org/10.1093/nar/gkh818.
  • Chung DW, Rudnicki DD, Yu L, Margolis RL (2011) A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression. Hum Mol Genet 20: 3467-3477. https://doi.org/10.1093/hmg/ddr263.
  • Conley AB, Jordan IK (2012) Epigenetic regulation of human cis-natural antisense transcripts. Nucleic Acids Res 40: 1438-1445. https://doi.org/10.1093/nar/gkr1010.
  • Conley AB, Miller WJ, Jordan IK (2008) Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 24: 53-56. https://doi.org/10.1016/j.tig.2007.11.008.
  • Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12: 19-31. https://doi.org/10.1038/nrg2916.
  • Dallosso AR, Hancock AL, Malik S, Salpekar A, King-Underwood L, Pritchard-Jones K, Peters J, Moorwood K, Ward A, Malik KT, Brown KW (2007) Alternately spliced WT1 antisense transcripts interact with WT1 sense RNA and show epigenetic and splicing defects in cancer. RNA 13: 2287-2299. https://doi.org/10.1261/rna.562907.
  • David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103: 5320-5325. https://doi.org/10.1073/pnas.0601091103.
  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990-1993.
  • Ebralidze AK, Guibal FC, Steidl U, Zhang P, Lee S, Bartholdy B, Jorda MA, Petkova V, Rosenbauer F, Huang G, Dayaram T, Klupp J, O'Brien KB, Will B, Hoogenkamp M, Borden KL, Bonifer C, Tenen DG (2008) PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev 22: 2085-2092. https://doi.org/10.1101/gad.1654808.
  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14: 723-730. https://doi.org/10.1038/nm1784.
  • Faghihi MA, Wahlestedt C (2006) RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol 7: R38. https://doi.org/10.1186/gb-2006-7-5-r38.
  • Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10: 637-643. https://doi.org/10.1038/nrm2738.
  • Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G 3rd, Wahlestedt C (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11: R56. https://doi.org/10.1186/gb-2010-11-5-r56.
  • Gantier MP, Williams BR (2007) The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 18: 363-371. https://doi.org/10.1016/j.cytogfr.2007.06.016.
  • Ge X, Rubinstein WS, Jung YC, Wu Q (2008) Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics 9: 27. https://doi.org/10.1186/1471-2164-9-27.
  • Grigoriadis A, Oliver GR, Tanney A, Kendrick H, Smalley MJ, Jat P, Neville AM (2009) Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues. BMC Genomics 10: 324. https://doi.org/10.1186/1471-2164-10-324.
  • Halley P, Khorkova O, Wahlestedt C (2013) Natural antisense transcripts as therapeutic targets. Drug Discov Today Ther Strateg 10: e119-e125. https://doi.org/10.1016/j.ddstr.2013.03.001.
  • Hastings ML, Ingle HA, Lazar MA, Munroe SH (2000) Post-transcriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J Biol Chem 275: 11507-11513.
  • Hatzoglou A, Deshayes F, Madry C, Lapree G, Castanas E, Tsapis A (2002) Natural antisense RNA inhibits the expression of BCMA, a tumour necrosis factor receptor homologue. BMC Mol Biol 3: 4.
  • Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1: 165-175. https://doi.org/10.4161/trns.1.3.13332.
  • Henikoff S, Keene MA, Fechtel K, Fristrom JW (1986) Gene within a gene: nested Drosophila genes encode unrelated proteins on opposite DNA strands. Cell 44: 33-42.
  • Hobson DJ, Wei W, Steinmetz LM, Svejstrup JQ (2012) RNA polymerase II collision interrupts convergent transcription. Mol Cell 48: 365-374. https://doi.org/10.1016/j.molcel.2012.08.027.
  • Inouye M (1988) Antisense RNA: its functions and applications in gene regulation - a review. Gene 72: 25-34.
  • Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engstrom PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C (2005) Antisense transcription in the mammalian transcriptome. Science 309: 1564-1566. https://doi.org/10.1126/science.1112009.
  • Kemenes I, Kemenes G, Andrew RJ, Benjamin PR, O'Shea M (2002) Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J Neurosci 22: 1414-1425.
  • Khalil AM, Faghihi MA, Modarresi F, Brothers SP, Wahlestedt C (2008) A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 3: e1486. https://doi.org/10.1371/journal.pone.0001486.
  • Khorkova O, Myers AJ, Hsiao J, Wahlestedt C (2014) Natural antisense transcripts. Hum Mol Genet 23: R54-R63. https://doi.org/10.1093/hmg/ddu207.
  • Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338: 349-354. https://doi.org/10.1126/science.1226339.
  • Korneev S, O'Shea M (2002) Evolution of nitric oxide synthase regulatory genes by DNA inversion. Mol Biol Evol 19: 1228-1233.
  • Korneev SA, Kemenes I, Bettini NL, Kemenes G, Staras K, Benjamin PR, O'Shea M (2013) Axonal trafficking of an antisense RNA transcribed from a pseudogene is regulated by classical conditioning. Sci Rep 3: 1027. https://doi.org/10.1038/srep01027.
  • Korneev SA, Park JH, O'Shea M (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 19: 7711-7720.
  • Kumar M, Carmichael GG (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62: 1415-1434.
  • Kwak PB, Tomari Y (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 19: 145-151. https://doi.org/10.1038/nsmb.2232.
  • Ladd PD, Smith LE, Rabaia NA, Moore JM, Georges SA, Hansen RS, Hagerman RJ, Tassone F, Tapscott SJ, Filippova GN (2007) An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16: 3174-3187. https://doi.org/10.1093/hmg/ddm293.
  • Lagana A, Paone A, Veneziano D, Cascione L, Gasparini P, Carasi S, Russo F, Nigita G, Macca V, Giugno R, Pulvirenti A, Shasha D, Ferro A, Croce CM (2012) miR-EdiTar: a database of predicted A-to-I edited miRNA target sites. Bioinformatics 28: 3166-3168. https://doi.org/10.1093/bioinformatics/bts589.
  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7: 1216-1222. https://doi.org/10.1038/sj.embor.7400857.
  • Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y (2010) Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38: 803-814. https://doi.org/10.1016/j.molcel.2010.04.005.
  • Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21: 400-404. https://doi.org/10.1038/7734.
  • Lee S, Bao J, Zhou G, Shapiro J, Xu J, Shi RZ, Lu X, Clark T, Johnson D, Kim YC, Wing C, Tseng C, Sun M, Lin W, Wang J, Yang H, Wang J, Du W, Wu CI, Zhang X, Wang SM (2005) Detecting novel low-abundant transcripts in Drosophila. RNA 11: 939-946. https://doi.org/10.1261/rna.7239605.
  • Lehner B, Williams G, Campbell RD, Sanderson CM (2002) Antisense transcripts in the human genome. Trends Genet 18: 63-65.
  • Li K, Ramchandran R (2010) Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget 1: 447-452. https://doi.org/10.18632/oncotarget.178.
  • Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38: 124-129. https://doi.org/10.1038/ng1704.
  • Li Q, Su Z, Xu X, Liu G, Song X, Wang R, Sui X, Liu T, Chang X, Huang D (2012) AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans. Proc Natl Acad Sci U S A 109: 14110-14115. https://doi.org/10.1073/pnas.1116597109.
  • Li S, Liberman LM, Mukherjee N, Benfey PN, Ohler U (2013) Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data. Genome Res 23: 1730-1739. https://doi.org/10.1101/gr.149310.112.
  • Ling KH, Brautigan PJ, Moore S, Fraser R, Cheah PS, Raison JM, Babic M, Lee YK, Daish T, Mattiske DM, Mann JR, Adelson DL, Thomas PQ, Hahn CN, Scott HS (2016) Derivation of an endogenous small RNA from double-stranded Sox4 sense and natural antisense transcripts in the mouse brain. Genomics 107: 88-99. https://doi.org/10.1016/j.ygeno.2016.01.006.
  • Ling MH, Ban Y, Wen H, Wang SM, Ge SX (2013) Conserved expression of natural antisense transcripts in mammals. BMC Genomics 14: 243. https://doi.org/10.1186/1471-2164-14-243.
  • Lu T, Zhu C, Lu G, Guo Y, Zhou Y, Zhang Z, Zhao Y, Li W, Lu Y, Tang W, Feng Q, Han B (2012) Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics 13: 721. https://doi.org/10.1186/1471-2164-13-721.
  • Luo C, Sidote DJ, Zhang Y, Kerstetter RA, Michael TP, Lam E (2013) Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J 73: 77-90. https://doi.org/10.1111/tpj.12017.
  • Makalowska I, Lin CF, Makalowski W (2005) Overlapping genes in vertebrate genomes. Comput Biol Chem 29: 1-12. https://doi.org/10.1016/j.compbiolchem.2004.12.006.
  • Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20: 1268-1282. https://doi.org/10.1101/gad.1416906.
  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49: 1135-1149. https://doi.org/10.1093/pcp/pcn101.
  • Menet JS, Rodriguez J, Abruzzi KC, Rosbash M (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife 1: e00011. https://doi.org/10.7554/eLife.00011.
  • Meng FL, Du Z, Federation A, Hu J, Wang Q, Kieffer-Kwon KR, Meyers RM, Amor C, Wasserman CR, Neuberg D, Casellas R, Nussenzweig MC, Bradner JE, Liu XS, Alt FW (2014) Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159: 1538-1548. https://doi.org/10.1016/j.cell.2014.11.014.
  • Michael DR, Phillips AO, Krupa A, Martin J, Redman JE, Altaher A, Neville RD, Webber J, Kim MY, Bowen T (2011) The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem 286: 19523-19532. https://doi.org/10.1074/jbc.M111.233916.
  • Misener SR, Walker VK (2000) Extraordinarily high density of unrelated genes showing overlapping and intraintronic transcription units. Biochim Biophys Acta 1492: 269-270.
  • Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, Marcel P, van der Brug MP, Wahlestedt C (2012b) Natural Antisense Inhibition Results in Transcriptional De-Repression and Gene Upregulation. Nat Biotechnol 30: 453-459. https://doi.org/10.1038/nbt.2158.
  • Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C (2012a) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30: 453-459. https://doi.org/10.1038/nbt.2158.
  • Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C, Lopez-Toledano MA (2011) Knockdown of BACE1-AS Nonprotein-Coding Transcript Modulates Beta-Amyloid-Related Hippocampal Neurogenesis. Int J Alzheimers Dis 2011: 929042. https://doi.org/10.4061/2011/929042.
  • Mol JN, van der Krol AR, van Tunen AJ, van Blokland R, de Lange P, Stuitje AR (1990) Regulation of plant gene expression by antisense RNA. FEBS Lett 268: 427-430.
  • Munroe SH, Lazar MA (1991) Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem 266: 22083-22086.
  • Munroe SH, Morales CH, Duyck TH, Waters PD (2015) Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbalpha and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRalpha2 mRNA. PLoS One 10: e0137893. https://doi.org/10.1371/journal.pone.0137893.
  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563.
  • Muro EM, Andrade-Navarro MA (2010) Pseudogenes as an alternative source of natural antisense transcripts. BMC Evol Biol 10: 338. https://doi.org/10.1186/1471-2148-10-338.
  • Nigita G, Veneziano D, Ferro A (2015) A-to-I RNA editing: current knowledge sources and computational approaches with special emphasis on non-coding RNA molecules. Front Bioeng Biotechnol 3: 37. https://doi.org/10.3389/fbioe.2015.00037.
  • Oeder S, Mages J, Flicek P, Lang R (2007) Uncovering information on expression of natural antisense transcripts in Affymetrix MOE430 datasets. BMC Genomics 8: 200. https://doi.org/10.1186/1471-2164-8-200.
  • Ohhata T, Matsumoto M, Leeb M, Shibata S, Sakai S, Kitagawa K, Niida H, Kitagawa M, Wutz A (2015) Histone H3 lysine 36 trimethylation is established over the Xist promoter by antisense Tsix transcription and contributes to repressing Xist expression. Mol Cell Biol 35: 3909-3920. https://doi.org/10.1128/MCB.00561-15.
  • Okamura K, Robine N, Liu Y, Liu Q, Lai EC (2011) R2D2 organizes small regulatory RNA pathways in Drosophila. Mol Cell Biol 31: 884-896. https://doi.org/10.1128/MCB.01141-10.
  • Osato N, Suzuki Y, Ikeo K, Gojobori T (2007) Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 176: 1299-1306. https://doi.org/10.1534/genetics.106.069484.
  • Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K, Matsubara K, Kikuchi S, Hayashizaki Y (2003) Antisense transcripts with rice full-length cDNAs. Genome Biol 5: R5. https://doi.org/10.1186/gb-2003-5-1-r5.
  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32: 232-246. https://doi.org/10.1016/j.molcel.2008.08.022.
  • Parenti R, Paratore S, Torrisi A, Cavallaro S (2007) A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta-amyloid-induced apoptosis. Eur J Neurosci 26: 2444-2457. https://doi.org/10.1111/j.1460-9568.2007.05864.x.
  • Pasmant E, Sabbagh A, Vidaud M, Bieche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25: 444-448. https://doi.org/10.1096/fj.10-172452.
  • Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, Basu U (2014) Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514: 389-393. https://doi.org/10.1038/nature13580.
  • Peters NT, Rohrbach JA, Zalewski BA, Byrkett CM, Vaughn JC (2003) RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA 9: 698-710.
  • Portal MM, Pavet V, Erb C, Gronemeyer H (2015) Human cells contain natural double-stranded RNAs with potential regulatory functions. Nat Struct Mol Biol 22: 89-97. https://doi.org/10.1038/nsmb.2934.
  • Quesada V, Ponce MR, Micol JL (1999) OTC and AUL1, two convergent and overlapping genes in the nuclear genome of Arabidopsis thaliana. FEBS Lett 461: 101-106.
  • Ramaswami G, Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42: D109-D113. https://doi.org/10.1093/nar/gkt996.
  • Roberts TC, Morris KV (2013) Not so pseudo anymore: pseudogenes as therapeutic targets. Pharmacogenomics 14: 2023-2034. https://doi.org/10.2217/pgs.13.172.
  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265: 687-695.
  • Scheele C, Petrovic N, Faghihi MA, Lassmann T, Fredriksson K, Rooyackers O, Wahlestedt C, Good L, Timmons JA (2007) The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics 8: 74. https://doi.org/10.1186/1471-2164-8-74.
  • Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference--a crash course. Trends Genet 21: 339-345. https://doi.org/10.1016/j.tig.2005.04.009.
  • Shendure J, Church GM (2002) Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol 3: RESEARCH0044.
  • Spencer CA, Gietz RD, Hodgetts RB (1986) Overlapping transcription units in the dopa decarboxylase region of Drosophila. Nature 322: 279-281. https://doi.org/10.1038/322279a0.
  • Stazic D, Lindell D, Steglich C (2011) Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection. Nucleic Acids Res 39: 4890-4899. https://doi.org/10.1093/nar/gkr037.
  • Steigele S, Nieselt K (2005) Open reading frames provide a rich pool of potential natural antisense transcripts in fungal genomes. Nucleic Acids Res 33: 5034-5044. https://doi.org/10.1093/nar/gki804.
  • Stolc V, Samanta MP, Tongprasit W, Sethi H, Liang S, Nelson DC, Hegeman A, Nelson C, Rancour D, Bednarek S, Ulrich EL, Zhao Q, Wrobel RL, Newman CS, Fox BG, Phillips GN Jr, Markley JL, Sussman MR (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci U S A 102: 4453-4458. https://doi.org/10.1073/pnas.0408203102.
  • Szczesniak MW, Makalowska I (2016) lncRNA-RNA Interactions across the Human Transcriptome. PLoS One 11: e0150353. https://doi.org/10.1371/journal.pone.0150353.
  • Szczesniak MW, Rosikiewicz W, Makalowska I (2016) CANTATAdb: A Collection of Plant Long Non-Coding RNAs. Plant Cell Physiol 57: e8. https://doi.org/10.1093/pcp/pcv201.
  • Szekely M (1977) PhiX174 sequenced. Nature 265: 685. https://doi.org/10. 1038/265685a0
  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453: 534-538. https://doi.org/10.1038/nature06904.
  • Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34: 157-165. https://doi.org/10.1038/ng1157.
  • van Duin M, van Den Tol J, Hoeijmakers JH, Bootsma D, Rupp IP, Reynolds P, Prakash L, Prakash S (1989) Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. Mol Cell Biol 9: 1794-1798.
  • van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E, Simonis M (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15: R6. https://doi.org/10.1186/gb-2014-15-1-r6.
  • Vanhee-Brossollet C, Vaquero C (1998) Do natural antisense transcripts make sense in eukaryotes? Gene 211: 1-9.
  • Veeramachaneni V, Makalowski W, Galdzicki M, Sood R, Makalowska I (2004) Mammalian overlapping genes: the comparative perspective. Genome Res 14: 280-286. https://doi.org/10.1101/gr.1590904.
  • Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16: 833-845. https://doi.org/10.1016/j.cmet.2012.11.004.
  • Wang GQ, Wang Y, Xiong Y, Chen XC, Ma ML, Cai R, Gao Y, Sun YM, Yang GS, Pang WJ (2016) Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 6: 21865. https://doi.org/10.1038/srep21865.
  • Wang H, Chua NH, Wang XJ (2006) Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol 7: R92. https://doi.org/10.1186/gb-2006-7-10-r92.
  • Wang Q, Carmichael GG (2004) Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 68: 432-452, table of contents. https://doi.org/10.1128/MMBR.68.3.432-452.2004.
  • Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6: R30. https://doi.org/10.1186/gb-2005-6-4-r30.
  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453: 539-543. https://doi.org/10.1038/nature06908.
  • Werner A, Cockell S, Falconer J, Carlile M, Alnumeir S, Robinson J (2014) Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 15: 19. https://doi.org/10.1186/1471-2164-15-19.
  • Wery M, Descrimes M, Vogt N, Dallongeville AS, Gautheret D, Morillon A (2016) Nonsense-mediated decay restricts LncRNA levels in yeast unless blocked by double-stranded RNA structure. Mol Cell 61: 379-392. https://doi.org/10.1016/j.molcel.2015.12.020.
  • Wight M, Werner A (2013) The functions of natural antisense transcripts. Essays Biochem 54: 91-101. https://doi.org/10.1042/bse0540091.
  • Williams T, Fried M (1986) A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3' ends. Nature 322: 275-279. https://doi.org/10.1038/322275a0.
  • Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, Glass NL, Crosthwaite SK, Liu Y (2014) Transcriptional interference by antisense RNA is required for circadian clock function. Nature 514: 650-653. https://doi.org/10.1038/nature13671.
  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842-846. https://doi.org/10.1126/science.1088305.
  • Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, Nemzer S, Pinner E, Walach S, Bernstein J, Savitsky K, Rotman G (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21: 379-386. https://doi.org/10.1038/nbt808.
  • Yu D, Meng Y, Zuo Z, Xue J, Wang H (2016) NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes. Sci Rep 6: 21666. https://doi.org/10.1038/srep21666.
  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451: 202-206. https://doi.org/10.1038/nature06468.
  • Zhang L, Yang CS, Varelas X, Monti S (2016) Altered RNA editing in 3' UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci Rep 6: 23226. https://doi.org/10.1038/srep23226.
  • Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu JK, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13: R20. https://doi.org/10.1186/gb-2012-13-3-r20.
  • Zhang Y, Liu XS, Liu QR, Wei L (2006) Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res 34: 3465-3475. https://doi.org/10.1093/nar/gkl473.
  • Zhou C, Blumberg B (2003) Overlapping gene structure of human VLCAD and DLG4. Gene 305: 161-166.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p665kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.