Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 581-587
Article title

Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia

Title variants
Languages of publication
As part of the contribution to the global efforts in research of thermostable enzymes being of industrial interest, we focus on the isolation of thermophilic bacteria from Tunisian hot springs. Among the collection of 161 strains of thermophilic Bacillus isolated from different samples of thermal water in Tunisia, 20% are capable of growing at 100°C and the rest grow at 70°C or above. Preliminary activity tests on media supplemented with enzyme-substrates confirmed that 35 strains produced amylases, 37 - proteases, 43 - cellulases, 31 - xylanases and 37 - mannanases. The study of the effect of temperature on enzyme activity led to determination of the optimal temperatures of activities that vary between 60 and 100°C. Several enzymes were active at high temperatures (80, 90 and 100°C) and kept their activity even at 110°C. Several isolated strains producing enzymes with high optimal temperatures of activity were described for the first time in this study. Both strains B62 and B120 are producers of amylase, protease, cellulase, xylanase, and mannanase. The sequencing of 16S DNA identified isolated strains as Geobacillus kaustophillus, Aeribacillus pallidus, Geobacillus galactosidasus and Geobacillus toebii.
Physical description
  • Laboratory of Biochemistry & Technobiology, Faculty of Science of Tunis, University of Tunis El Manar, Campus University Farhat HACHED El Manar 2092, Tunis
  • Laboratory of Biochemistry & Technobiology, Faculty of Science of Tunis, University of Tunis El Manar, Campus University Farhat HACHED El Manar 2092, Tunis
  • Laboratory of Biochemistry & Technobiology, Faculty of Science of Tunis, University of Tunis El Manar, Campus University Farhat HACHED El Manar 2092, Tunis
  • Laboratory of Biochemistry & Technobiology, Faculty of Science of Tunis, University of Tunis El Manar, Campus University Farhat HACHED El Manar 2092, Tunis
  • Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79: 321-328. doi: 10.1016/j.mimet.2009.09.026.
  • Annamalai N, Rajeswari MV, Balasubramanian T (2014) Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food Bioprod Process 92: 335-342. doi: 10.1016/j.fbp.2013.08.009.
  • Assareh R, Shahbani Zahiri H, Akbari Noghabi K, Aminzadeh S, Bakhshi Khaniki G (2012) Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresour Technol 120: 99-105. doi: 10.1016/j.biortech.2012.06.027.
  • Bae SS, Lee JH, Kim SJ (2005) Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. Int J Syst Evol Microbiol 55: 1211-1215. doi: 10.1099/ijs.0.63424-0.
  • Bajaj BK, Manhas K (2012) Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry. Biocatal Agric Biotechnol 1: 330-337. doi: 10.1016/j.bcab.2012.07.003.
  • Becker P, Abu-Reesh I, Markossian S, Antranikian G, Märkl H (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl Microbiol Biotechnol 48: 184-190. doi: 10.1007/s002530051036.
  • Benkiara A, Zaraî Jaouadi N, Abdelmalek B, Feriel R, Boulkour Touioui S, Hatem R, Belgacem N, Fatma Zohra F, Samir B, Bassem J (2013) Biochemical and molecular characterization of a thermo- and detergent-stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. Int Biodeterior Biodegradation 83: 129-138. doi: 10.1016/j.ibiod.2013.05.014.
  • Božić N, Ruiz J, López-Santín J, Vujčić Z (2011) Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J 53: 203-209. doi: 10.1016/j.bej.2010.10.014.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi: 10.1016/0003-2697(76)90527-3.
  • Breccia JD, Siñeriz F, Baigorí MD, Castro GR, Hatti-Kaul R (1998) Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme Microb Technol 22: 42-49. doi: 10.1016/S0141-0229(97)00102-6.
  • Chen XG, Stabnikova O, Tay JH, Wang JY, Tay SL (2004) Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8: 489-498. doi: 10.1007/s00792-004-0412-5.
  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322: 275-278. doi: 10.1126/science.1155495.
  • Cihan AC, Ozcan B, Tekin N, Cokmus C (2011) Geobacillus thermodenitrificans subsp. calidus, subsp. nov., a thermophilic and. ALPHA.-glucosidase producing bacterium isolated from Kizilcahamam, Turkey. J Gen Appl Microbiol 57: 83-92. doi: 10.2323/jgam.57.83.
  • Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62: 1470-1485. doi: 10.1099/ijs.0.030346-0.
  • Dhillon A, Gupta JK, Jauhari BM, Khanna S (2000) A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour Technol 73: 273-277. doi: 10.1016/S0960-8524(99)00116-9.
  • Fooladi J, Sajjadian A (2010) Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain. Iran J Microbiol 2: 46-50.
  • H. Aqel Fa-Qatky (2012) A novel neutral protease from thermophilic Bacillus strain HUTBS62. J BioSci Biotechnol 1: 117-123.
  • He X, Liu N, Li W, Zhang Z, Zhang B, Ma Y (2008) Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb Technol 43: 13-18. doi: 10.1016/j.enzmictec.2008.03.011.
  • Hmidet N, El-Hadj Ali N, Haddar A, Kanoun S, Alya S-K, Nasri M (2009) Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem Eng J 47: 71-79. doi: 10.1016/j.bej.2009.07.005.
  • Junge JM, Stein EA, Neurath H, Fischer EH (1959) The amino acid composition of α-amylase from Bacillus subtilis. J Biol Chem 234: 556-561.
  • Kasana R, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol 57: 503-507. doi: 10.1007/s00284-008-9276-8.
  • Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98: 150-157. doi: 10.1016/j.biortech.2005.11.001.
  • Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2: 14. doi: 10.1186/1754-6834-2-14.
  • Lagzian M, Asoodeh A (2012) An extremely thermotolerant, alkaliphilic subtilisin-like protease from hyperthermophilic Bacillus sp. MLA64. Int J Biol Macromol 51: 960-967. doi: 10.1016/j.ijbiomac.2012.08.009.
  • Lamanna C (1940) The taxonomy of the genus Bacillus: I. Modes of spore germination. J Bacteriol 40: 347-361.
  • Logan NAL, Allan RNA (2008) Aerobic, endospore-forming bacteria from antarctic geothermal soils. In Microbiology of Extreme Soils, Soil Biology. Dion P, Nautiyal C eds, vol 13, pp 155-175. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-74231-9_8.
  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208-IN201. doi: 10.1016/S0022-2836(61)80047-8.
  • Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B (2000) Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol 83: 177-187. doi: 10.1016/S0168-1656(00)00305-9.
  • Nascimento RP, Coelho RRR, Marques S, Alves L, Gírio FM, Bon EPS, Amaral-Collaço MT (2002) Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb Technol 31: 549-555. doi: 10.1016/S0141-0229(02)00150-3.
  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51: 711-729. doi: 10.1007/s002530051456.
  • Piterina AV, Bartlett J, Pembroke JT (2010) Molecular analysis of bacterial community DNA in sludge undergoing autothermal thermophilic aerobic digestion (ATAD): pitfalls and improved methodology to enhance diversity recovery. Diversity 2: 505.
  • Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B (2011) Geobacillus galactosidasius sp. nov., a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol 34: 419-423. doi: 10.1016/j.syapm.2011.03.009.
  • Puchart V, Katapodis P, Biely P, Kremnický L, Christakopoulos P, Vršanská M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 24: 355-361. doi: 10.1016/S0141-0229(98)00132-X.
  • Rainey FA, Fritze D, Stackebrandt E (1994) The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol Lett 115: 205-211.
  • Shamala TR, Sreekantiah KR (1986) Production of cellulases and d-xylanase by some selected fungal isolates. Enzyme Microb Technol 8: 178-182. doi: 10.1016/0141-0229(86)90109-2.
  • Shrinivas D, Naik GR (2011) Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterior Biodegradation 65: 29-35. doi: 10.1016/j.ibiod.2010.04.013.
  • Sinha R, Khare SK (2013) Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresour Technol 145: 357-361. doi: 10.1016/j.biortech.2012.11.024.
  • Slepecky R, Hemphill HE (2006) The genus Bacillus - nonmedical. In The Prokaryotes, Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E eds, pp 530-562. Springer US. PubMed
  • Teodoro CEdS, Martins MLL (2000) Culture conditions for the production of thermostable amylase by Bacillus sp. Braz J Microbiol 31: 298-302.
  • Yang VW, Zhuang Z, Elegir G, Jeffries TW (1995) Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp. J Ind Microbiol 15: 434-441. doi: 10.1007/BF01569971.
  • Yin LJ, Tai HM, Jiang ST (2012) Characterization of mannanase from a novel mannanase-producing bacterium. J Agric Food Chem 60: 6425-6431. doi: 10.1021/jf301944e.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.