PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 1 | 53-58
Article title

Abscisic acid - an overlooked player in plant-microbe symbioses formation?

Content
Title variants
Languages of publication
EN
Abstracts
EN
Abscisic acid (ABA) is an ubiquitous plant hormone and one of the foremost signalling molecules, controlling plants' growth and development, as well as their response to environmental stresses. To date, the function of ABA has been extensively investigated as an abiotic stress molecule which regulates the plants' water status. However, in the context of symbiotic associations, ABA is less recognized. In contrast to well-described auxin/cytokinin and gibberellin/strigolactone involvement in symbioses, ABA has long been underestimated. Interestingly, ABA emerges as an important player in arbuscular mycorrhiza and legume-rhizobium symbiosis. The plant's use of stress hormones like ABA in regulation of those interactions directly links the efficiency of these processes to the environmental status of the plant, notably during drought stress. Here we provide an overview of ABA interplay in beneficial associations of plants with microorganisms and propose ABA as a potential factor determining whether the investment in establishing the interaction is higher than the profit coming from it.
Publisher

Year
Volume
63
Issue
1
Pages
53-58
Physical description
Dates
published
2016
received
2015-11-03
revised
2015-12-07
accepted
2015-12-18
(unknown)
2016-02-01
Contributors
author
  • Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry PAS, Poznań, Poland
  • Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
  • Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry PAS, Poznań, Poland
  • Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry PAS, Poznań, Poland
  • Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań, Poland
References
  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827.
  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131: 1496-1507.
  • Bano A, Harper JE (2002) Plant growth regulators and phloem exudates modulate root nodulation of soybean. Funct Plant Biol 29:
  • Bano A, Harper JE, Auge RM (2002) Changes in phytohormone levels following inoculation of two soybean lines differing in nodulation. Funct Plant Biol 29: 965-974.
  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signalling cascades. Plant Cell 12: 1103-1115.
  • Biswas B, Chan PK, Gresshoff PM (2009) A novel ABA insensitive mutant of Lotus japonicus with a wilty phenotype displays unaltered nodulation regulation. Mol Plant 2: 487-499.
  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8: 443-449.
  • Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18: 325-333.
  • Caba JM, Centeno ML, Fernández B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211: 98-104.
  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189: 347-355.
  • Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GE (2014) Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiol 166: 2077-2090.
  • Clarke VC, Loughlin PC, Day DA, Smith PM (2014) Transport processes of the legume symbiosome membrane. Front Plant Sci 5: 699.
  • Crawford NM, Kahn M, Leustek T, Long SR (2000) Nitrogen and sulfur. In Biochemistry and Molecular Biology of Plants; Buchanan BB, Gruissem W, Jones RL, eds, pp 787-849. American Association of Plant Physiologists: Rockville, MD, USA.
  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signalling network. Annu Rev Plant Biol 61: 651-679.
  • Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GE (2008) Abscisic acid coordinates nod factor and cytokinin signalling during the regulation of nodulation in Medicago truncatula. Plant Cell 20: 2681-2695.
  • Ding Y, Oldroyd GE (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4: 89-93.
  • Faghire M, Bargaz Adnane B, Mohamed Farissi M, Palma F, Mandri B, Lluch C (2011) Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55: 69-75.
  • Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40: 770-790.
  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111: 769-779.
  • Gil-Quintana E, Larrainzar E, Seminario A, Díaz-Leal JL, Alamillo JM, Pineda M, Arrese-Igor C, Wienkoop S, González EM (2013) Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot 64: 2171-2182.
  • Goggin DE, Steadman KJ, Emery RJ, Farrow SC, Benech-Arnold RL, Powles SB (2009) ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud. J Exp Bot 60: 3387-3396.
  • Gresshoff PM, Lohar D, Chan PK, Biswas B, Jiang Q, Reid D, Ferguson B, Stacey G (2009) Genetic analysis of ethylene regulation of legume nodulation. Plant Signal Behav 4: 818-823.
  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29: 593-617.
  • Harrison MJ (2012) Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 15: 691-698.
  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175: 554-564.
  • Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Brouquisse R (2015) Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J Exp Bot 66: 2877-2887.
  • Hu R, Zhu Y, Shen G, Zhang H (2014) TAP46 Plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. Plant Physiol 164: 721-734.
  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139: 1401-1410.
  • Kassaw T, Bridges W, Frugoli J (2015) Multiple Autoregulation of Nodulation (AON) Signals identified through split root analysis of Medicago truncatula sunn and rdn1 mutants. Plants 4: 209-224.
  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25: 110-119.
  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7: 511-518.
  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483: 341-344.
  • Landgraf R, Schaarschmidt S, Hause B (2012) Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant Cell Environ 35: 1344-1357.
  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187: 343-354.
  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 58-63.
  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, Gonzalez EM (2007) Nitrogen fixation control under drought stress. localized or systemic? Plant Physiol 143: 1968-1974.
  • Martın Rodriguez JA, Morcillo RL, Vierheilig H, Ocampo JA, Ludwig-Muller J, Garrido JM (2010) Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents. J Plant Physiol 167: 606-613.
  • Martín-Rodríguez JÁ, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190: 193-205.
  • Matre P, Meyer C, Lillo C (2009) Diversity in subcellular targeting of the PP2A B'eta subfamily members. Planta 230: 935-945.
  • Miao S, Shi H, Jin J, Liu J, Liu X, Wang G (2012) Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture. JFAE 10: 819-824.
  • Miri M, Janakirama P, Held M, Ross L, Szczyglowski K (2015) Into the root: how cytokinin controls rhizobial infection. Trends Plant Sci 21: 178-186.
  • Nasr Esfahani M, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J 79: 964-80.
  • Navazio L, Mariani P (2008) Calcium opens the dialogue between plants and arbuscular mycorrhizal fungi. Plant Signal Behav 3: 229-230.
  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11: 252-263.
  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45: 119-144.
  • Phillips DA (1971) Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100: 181-190.
  • Rodríguez-Gacio MC, Matilla-Vázquez MA, Matilla AJ (2009) Seed dormancy and ABA signalling: the breakthrough goes on. Plant Signal Behav 4: 1035-1049.
  • Santiago J1, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182: 3-11.
  • Serraj R (2003) Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Indian J Exp Biol 41: 1136-141.
  • Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG (2012) A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant J 69: 822-830.
  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormone abscisic Acid in the roots of two leguminous species. Plant Cell Physiol 45: 914-922.
  • Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch A, Arima S, Suzuki A (2010) Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav 5: 440-443.
  • Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A (2009) Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiol 151: 1965-1976.
  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235: 1197-1207.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p53kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.