PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 533-541
Article title

Towards understanding the role of sialylation in melanoma progression

Content
Title variants
Languages of publication
EN
Abstracts
EN
Aberrant expression of sialic acids or altered linkage types is closely associated with malignant phenotype and metastatic potential, and can have prognostic significance in human cancer. The present study was undertaken to evaluate whether expression of sialylated derivatives on melanoma cell surface is associated with tumour progression. Four cell lines (WM1552C, WM115, IGR-39 and WM266-4) were used in the study. Cell surface expression of sialic acids was evaluated by flow cytometry with the use of Maackia amurensis and Sambucus nigra lectins. Moreover, adhesion and migration potential of melanoma cells and involvement of sialic acids in these processes were analysed. We have demonstrated that WM266-4 cells have a significantly higher level of α2,3-linked sialic acid residues than other cells, whereas IGR-39 cells had lower expression of α2,6-linked sialic acids. The adhesion efficiencies of WM1552C and WM115 cells were significantly lower than that of IGR-39 and WM266-4 cells. In contrast, WM266-4 cells repaired scratch wounds at least twice as fast as other cells. Melanoma cell adhesion to fibronectin in the presence of Sambucus nigra agglutinin (SNA) was reduced only in IGR-39 and WM266-4 cells, whereas the impact of Maackia amurensis agglutinin (MAA) on this process was much more important. Migration efficiency of melanoma cells was reduced more strongly in the presence of MAA than SNA. In conclusion, our results show that melanoma progression is associated with the increased expression of α2,3-linked sialic acids on the cell surface and these residues could promote melanoma cell interaction with fibronectin.
Publisher

Year
Volume
63
Issue
3
Pages
533-541
Physical description
Dates
published
2016
received
2015-11-24
revised
2016-05-23
accepted
2016-05-25
(unknown)
2016-07-30
Contributors
  • Department of Glycoconjugate Biochemistry, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Glycoconjugate Biochemistry, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Glycoconjugate Biochemistry, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Glycoconjugate Biochemistry, Jagiellonian University in Krakow, Kraków, Poland
References
  • Aubert C, Rouge F, Galindo JR (1980) Tumorigenicity of human malignant melanocytes in nude mice in relation to their differentiation in vitro. J Natl Cancer Inst 64: 1029-1040.
  • Bartik P, Maglott A, Entlicher G, Vestweber D, Takeda K, Martin S, Dontenwill M (2008) Detection of a hypersialylated β1 integrin endogenously expressed in the human astrocytoma cell line A172. Int J Oncol 32: 1021-1031.
  • Bassaganas S, Perez-Garay M, Peracaula R (2014) Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas 43: 109-117. doi: 10.1097/MPA.0b013e31829d9090.
  • Bellis SL (2004) Variant glycosylation: an underappreciated regulatory mechanism for beta1 integrins. Biochim Biophys Acta 1663: 52-60.
  • Büll C, Stoel MA, den Brok MH, Adema GJ (2014a) Sialic acids sweeten a tumor's life. Cancer Res 74: 3199-3204. doi: 10.1158/0008-5472.CAN-14-0728.
  • Büll C, den Brok MH, Adema GJ (2014b) Sweet escape: Sialic acids in tumor immune evasion. Biochim Biophys Acta 1846: 238-246. doi: 10.1016/j.bbcan.2014.07.005.
  • Chang ML, Eddy RL, Shows TB, Lau JT (1995) Three genes that encode human β-galactoside α2-3 sialyltransferses. Structural analysis and chromosomal mapping. Glycobiology 5: 319-325.
  • Chang WW, Yu CY, Lin TW, Wang PH, Tsai YC (2006) Soyasaponin I decreases the expression of α2,3-linked sialic acid on the cell surface and supress the metastatic potential of B16F10 melanoma cells. Biochem Biophys Res Commun 341: 614-619.
  • Chen JY, Tang YA, Huang SM, Juan HF, Wu LW, Sun YC, Wang Sc, Wu KW, Balraj G, Chang TT, Li WS, Cheng HC, Wang YC (2011) A novel sialyltransferase inhibitor suppresses FAK/paxillin signalling and cancer angiogenesis and metastatic pathways. Cancer Res 71: 473-483. doi: 10.1158/0008-5472.CAN-10-1303.
  • Chovanec M, Plzak J, Betka J, Brabec J, Kodet R, Smetana K Jr (2004) Comparative analysis of α2,3/2,6-linked N-acetyneuraminic acid and cytokeratin expression in head and neck squamous cell carcinoma. Oncol Rep 12: 297-301.
  • Christie DR, Shaikh FM, Lucas JA 4th, Lucas JA 3rd, Bellis SL (2008) ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res 1: 3. doi: 10.1186/1757-2215-1-3.
  • Couldrey C, Green JE (2000) Metastases: the glycan connection. Breast Cancer Res 2: 321-323.
  • Cui H, Lin Y, Yue L, Zhao X, Liu J (2011) Differential expression of the α2,3-sialic acid residues in breast cancer is associated with metastatic potential. Oncol Rep 25: 1365-1371. doi: 10.3892/or.2011.1192.
  • Dall'Olio F (2000) The sialyl-α2,6-lactosaminyl-structure: Biosynthesis and functional role. Glycoconj J 17: 669-676.
  • Dall'Olio F, Chiricolo M, D'Errico A, Gruppioni E, Altimari A, Fiorentino M, Grigioni WF (2004) Expression of β-galactoside α2,6 sialyltransferase and of α2,6-sialylated glycoconjugates in normal human liver, hepatocarcinoma, and cirrhosis. Glycobiology 14: 39-49.
  • Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M (2014) Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta 1840: 2752-2764. doi: 10.1016/j.bbagen.2014.06.006.
  • Dimitroff CJ, Pera P, Dall'Olio F, Matta KL, Chandrasekaran EV, Lau JT, Bernacki RJ (1999) Cell surface N-acetylneuraminic acid α2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem Biophys Res Comm 256: 631-636.
  • Gallagher WM, Bergin OE, Rafferty M, Kelly ZD, Nolan IM, Fox EJ, Culhane AC, McArdle L, Fraga MF, Hughes L, Currid CA, O'Mahony F, Byrne A, Murphy AA, Moss C, McDonnell S, Stallings RL, Plumb JA, Esteller M, Brown R, Dervan PA, Easty DJ (2005) Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis 26: 1856-1867.
  • Gomes C, Osorio H, Pinto MT, Campos D, Oliveira MJ, Reis CA (2013) Expression of ST3GAL4 leads to SL(x) expression and induces c-Met activation and invasive phenotype in castric carcinoma cells. PLoS One 8: e66737. doi: 10.1371/journal.pone.0066737.
  • Gu J, Taniguchi N (2008) Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell Adh Migr 2: 243-245.
  • Guo HB, Liu F, Zhao JH, Chen HL (2000) Down-regulation of N-acetylglucosaminyltransferase V by tumorigenesis- or metastasis suppressor gene and its relation to metastatic potential of human hepatocarcinoma cells. J Cell Biochem 79: 370-385.
  • Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M (2002) Aberrant N-glycosylation of β1 integrin causes reduced α5β1 integrin clustering and stimulates cell migration. Cancer Res 62: 6837-6845.
  • Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P (2001) The human sialyltransferase family. Biochimie 83: 727-737.
  • Hedlund M, Ng E, Varki A, Varki NM (2008) α 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 68: 388-394. doi: 10.1158/0008-5472.CAN-07-1340.
  • Hsu MY, Shih DT, Meier FE, Van Belle P, Hsu JY, Elder DE, Buck CA, Herlyn M (1998) Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am J Pathol 153: 1435-1442.
  • Janik ME, Przybyło M, Pocheć E, Pokrywka M, Lityńska A (2010a) Effect of α3β1 and αvβ3 integrin expression on interaction of melanoma cells with vitronectin. Acta Biochim Pol 57: 55-61.
  • Janik ME, Lityńska A, Vereecken P (2010b) Cell migration-the role of integrin glycosylation. Biochim Biophys Acta 1800: 545-555. doi: 10.1016/j.bbagen.2010.03.013.
  • Janik ME, Lityńska A, Przybyło M (2014) Studies on primary uveal and cutaneous melanoma cell interaction with vitronectin. Cell Biol Int 38: 942-952. doi: 10.1002/cbin.10280.
  • Julien S, Adriaenssens E, Ottenberg K, Furlan A, Courtand G, Vercoutter-Edouart AS, Hanisch FG, Delannoy P, Le Bourhis X (2006) ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 16: 54-64.
  • Kitagawa H, Paulson JC (1994) Differential expression of five sialyltransferases. J Biol Chem 264: 10931-10934.
  • Laidler P, Gil D, Pituch-Noworolska A, Ciołczyk D, Książek D, Przybyło M, Lityńska A (2000) Expression of beta1-integrins and N-cadherin In bladder cancer and melanoma cell lines. Acta Biochim Pol 47: 1159-1170.
  • Laidler P, Lityńska A, Hoja-Łukowicz D, Łabędź M, Przybyło M, Ciołczyk-Wierzbicka D, Pocheć E, Trębacz E, Kremser E (2006) Characterization of glycosylation and adherent properties of melanoma cell lines. Cancer Immunol Immunother 55: 112-118.
  • Li G, Herlyn M (2000) Dynamics of intercellular communication during melanoma development. Mol Med Today 6: 163-169.
  • Lityńska A, Przybyło M, Pocheć E, Hoja-Łukowicz D, Ciołczyk D, Laidler P, Gil D (2001) Comparison of the lectin-binding pattern in different human melanoma cell lines. Melanoma Res 11: 205-212.
  • Lityńska A, Przybyło M, Hoja-Łukowicz D, Pocheć E, Kremser M, Ciołczyk-Wierzbicka D, Łabądź M, Laidler P (2008) Protein Glycosylation as Marker of Melanoma Progression. Curr Cancer Ther Rev 4: 144-148.
  • Lu J, Gu J (2015) Significance of β-galactoside α2,6 sialyltransferase 1 in cancers. Molecules 20: 7509-7527. doi: 10.3390/molecules20057509.
  • Maupin KA, Sinha A, Eugster E, Miller J, Ross J, Paulino V, Keshamouni VG, Tran N, Berens M, Webb C, Haab BB (2010) Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems. PLoS One 5: e13002.
  • Menon S, Beningo KA (2011) Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS One 6: e17277. doi: 10.1371/journal.pone.0017277.
  • Nadanaka S, Sato C, Kitajima C, Katagiri K, Irie S, Yamagata T (2001) Occurrence of oligosialic acids on integrin α5 Subunit and their involvement in cell adhesion to fibronectin. J Biol Chem 276: 33657-33664.
  • Nakagoe T, Fukushima K, Itoyanagi N, Ikuta Y, Oka T, Nagayasu T, Ayabe H, Hara S, Ishikawa H, Minami H (2002) Expression of ABH/Lewis-related antigens as prognostic factors in patients with breast cancer. J Cancer Res Clin Oncol 128: 257-264.
  • Ochwat D, Hoja-Łukowicz D, Lityńska A (2004) N-glycoproteins bearing β1-6 branched oligosaccharides from the A375 human melanoma cell line analysed by tandem mass spectrometry. Melanoma Res 14: 479-485.
  • Ohyama C (2008) Glycosylation in bladder cancer. Int J Clin Oncol 13: 308-313. doi: 10.1007/s10147-008-0809-8.
  • Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126: 855-867.
  • Padler-Karavani V (2014) Aiming at the sweet side of cancer: aberrant glycosylation as possible target for personalized-medicine. Cancer Lett 352: 102-112. doi: 10.1016/j.canlet.2013.10.005.
  • Patani N, Jiang W, Mokbel K (2008) Prognostic utility of glycosyltransferase expression in breast cancer. Cancer Genomics Proteomics 5: 333-340.
  • Peracaula R, Tabarés G, López-Ferrer A, Brossmer R, de Bolós C, de Llorens R (2005) Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells. Glycoconj J 22: 135-144.
  • Perez-Garay M1, Arteta B, Pages L, de Llorens R, de Bolòs C, Vidal-Vanaclocha F, Peracaula R (2010) α2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 5: e12524. doi: 10.1371/journal.pone.0012524.
  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83: 346-356.
  • Pinho S, Marcos NT, Ferreira B, Carvalho AS, Oliveira MJ, Santos-Silva F, Harduin-Lepers A, Reis CA (2007) Biological significance of cancer-associated sialyl-Tn antigen: Modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett 249: 157-170.
  • Pocheć E, Lityńska A, Amoresano A, Casbarra A (2003) Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochim Biophys Acta 1643: 113-123.
  • Pocheć E, Janik M, Hoja-Łukowicz D, Link-Lenczowski P, Przybyło M, Lityńska A (2013) Expression of integrins α3β1 and α5β1 and GlcNAc β1,6 glycan branching influences metastatic melanoma cell migration on fibronectin. Eur J Cell Biol 92: 355-362. doi: 10.1016/j.ejcb.2013.10.007.
  • Pocheć E, Bubka M, Rydlewska M, Janik M, Pokrywka M, Lityńska A (2015) Aberrant glycosylation of αvβ3 integrin is associated with melanoma progression. Anticancer Res 35: 2093-2103.
  • Polacheck WJ, Zervantonakis IK, Kamm RD (2013) Tumor cell migration in complex microenvironments. Cell Mol Life Sci 70: 1335-13356. doi: 10.1007/s00018-012-1115-1.
  • Przybyło M, Martuszewska D, Pocheć E, Hoja-Łukowicz D, Lityńska A (2007) Identification of proteins bearing β1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim Biophys Acta 1770: 1427-1435.
  • Przybyło M, Pocheć E, Link-Lenczowski P, Lityńska A (2008) β1-6 branching of cell surface glycoproteins may contribute to uveal melanoma progression by up-regulating cell motility. Mol Vis 14: 625-636.
  • Przybyło M, Lityńska A (2011) Glycans in melanoma screening. Part 1. The role of β1,6 branched N-linked oligosaccharides in melanoma. Biochem Soc Trans 39: 370-373. doi: 10.1042/BST0390370.
  • Reddy BV, Kalraiya RD (2006) Sialilated β1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta 1760: 1393-1402.
  • Ruiter DJ, van Muijen GN (1998) Markers of melanocytic tumour progression. J Pathol 186: 340-342.
  • Sakuma K, Aoki M, Kannagi R (2012) Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci USA 109: 7776-7781. doi: 10.1073/pnas.1111135109.
  • Saldova R, Fan Y, Fitzpatrick JM, Watson RW, Rudd PM (2011) Core fucosylation and α2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 21: 195-205. doi: 10.1093/glycob/cwq147.
  • Schaffner F, Ray AM, Dontenwill M (2013) Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel) 5: 27-47. doi: 10.3390/cancers5010027.
  • Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19: 507-514. doi: 10.1016/j.sbi.2009.06.003.
  • Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31: 501-518. doi: 10.1007/s10555-012-9359-7.
  • Seales EC, Jurado GA, Singhal A, Bellis SL (2003) Ras oncogene directs expression of a differentially sialylated, functionally altered β1 integrin. Oncogene 22: 7137-7145.
  • Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL (2005) Hypersialylation of β1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65: 4645-4652.
  • Shah MH, Telang SD, Shah PM, Patel PS (2008) Tissue and serum α 2-3- and α 2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj J 25: 279-290.
  • Siddiqui SF, Pawelek J, Handerson T, Lin CY, Dickson RB, Rimm DL, Camp RL (2005) Coexpression of β1,6-N-acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 14: 2517-2523.
  • Sturm RA, Satyamoorthy K, Meier F, Gardiner BB, Smit DJ, Vaidya B, Herlyn M (2002) Osteonectin/SPARC induction by ectopic 3 integrin in human radial growth phase primary melanoma cells. Cancer Res 62: 226-232.
  • Swindall AF, Bellis SL (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286: 22982-22990. doi: 10.1074/jbc.M110.211375.
  • Szajda SD, Jankowska A, Zwierz K (2008) Carbohydrate markers in colon carcinoma. Dis Markers 25: 233-242.
  • Tanaka F, Otake Y, Nakagawa T, Kawano Y, Miyahara R, Li M, Yanagihara K, Nakayama J, Fujimoto I, Ikenaka K, Wada H (2000) Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumor progression in non-small cell lung cancer. Cancer Res 60: 3072-3080.
  • Taniguchi A, Hioki M, Matsumoto K (2003) Transcriptional regulation of human Galβ1,3 GalNAc/Galβ1,4Glc α2,3 sialyltransferase (hST4GalIV) gene in testis and ovary cell line. Biochem Biophys Res Commun 301: 764-768.
  • Thomas P (1996) Cell surface sialic acid as a mediator of metastatic potential in colorectal cancer. Cancer J 9: 1-10.
  • Varki A, Schauer R (2009) Sialic acids. In Essentials of Glycobioogy, Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME eds, chapter 14. Cold Spring Harbor (NY). PubMed
  • Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87: 851-857.
  • Vajaria BN, Patel KR, Begum R, Patel JB, Shah FD, Joshi GM, Patel PS (2014) Salivary glyco-sialylation changes monitors oral carcinogenesis. Glycoconj J 31: 649-659. doi: 10.1007/s10719-014-9561-7.
  • Videira PA, Correia M, Malagolini N, Crespo HJ, Ligeiro D, Calais FM, Trindade H, Dall'Olio F (2009) ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer doi: 10.1186/1471-2407-9-357.
  • Wang FL, Cui SX, Sun LP, Qu XJ, Xie YY, Zhou L, Mu YL, Tang W, Wang YS (2009) High expression of α 2,3-sialic acid residues is associated with the metastatic potential of human gastric cancer. Cancer Detect Prev 32: 437-443. doi: 10.1016/j.cdp.2009.01.001.
  • Wang PH (2005a) Altered glycosylation in cancer: sialic acids and sialyltransferases. J Cancer Mol 1: 73-81.
  • Wang PH, Lee WL, Juang CM, Yang YH, Lo WH, Lai CR, Hsieh SL, Yuan CC (2005b) Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol 99: 631-639.
  • Westermark B, Johnsson A, Betsholtz C, Heldin CH, Herlyn M, Rodeck U, Koprowski H (1986) Human melanoma cell lines of primary and metastatic origin express the gene encoding the chains of platelet-derived growth factor (PDGF) and produce PDGF-like growth factor. Proc Natl Acad Sci USA 83: 7197-7200.
  • Xu L, Kurusu Y, Takizawa K, Tanaka J, Matsumoto K, Taniguchi A (2003) Transcriptional regulation of human β-galactoside α2,6-sialyltransferase (hST6Gal I) gene in colon adenocarcinoma cell line. Biochem Biophys Res Commun 307: 1070-1074.
  • Yamamoto H, Saito T, Kaneko Y, Kersey D, Yong VW, Bremer EG, Mkrdichian E, Cerullo L, Leestma J, Moskal JR (1997) α2,3-sialyltransferase mRNA and α2,3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Res 755: 175-179.
  • Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99: 1304-1310. doi: 10.1111/j.1349-7006.2008.00839.x.
  • Zhang Y, Zhao J, Zhang X, Guo H, Liu F, Chen H (2004) Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions. Mol Cell Biochem 260: 137-146.
  • Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV (2009) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105: 1094-105. doi: 10.1002/bit.22633.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p533kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.